Constant Approximating Parameterized *k*-SetCover is W[2]-hard

Bingkai Lin, Xuandi Ren, Yican Sun, Xiuhan Wang

Jan, 2023

SetCover Problem

Input: (S, U), where S is a collection of n sets S_1 , ..., S_n over the universe U. **Output:** find the smallest number of sets in S, whose union is U.

- Equivalent view:
 - Given a bipartite graph $G = (S \cup U, E = \{(S_i, u) | u \in S_i\})$, find the smallest number of left vertices, whose neighbors' union is U.
- Example:
 - $U = \{1,2,3,4,5\}, S = \{S_1 = \{1,2\}, S_2 = \{2,3,4\}, S_3 = \{1,4\}, S_4 = \{5\}\}$
 - Answer: $3(S_1, S_2, S_4)$.

SetCover Problem

Input: (S, U), where S is a collection of n sets S_1 , ..., S_n over the universe U. **Output:** find the smallest number of sets in S, whose union is U.

- Equivalent view:
 - Given a bipartite graph $G = (S \cup U, E = \{(S_i, u) | u \in S_i\})$, find the smallest number of left vertices, whose neighbors' union is U.
- Example:
 - $U = \{1,2,3,4,5\}, S = \{S_1 = \{1,2\}, S_2 = \{2,3,4\}, S_3 = \{1,4\}, S_4 = \{5\}\}$
 - Answer: $3(S_1, S_2, S_4)$.
- NP-complete [Kar72]

Parameterized SetCover Problem

k-SetCover

Input: (S, U, k), where S is a collection of n sets S_1 , ..., S_n over the universe U. **Output:** find the smallest number of sets in S, whose union is U. It's guaranteed that the optimum is k.

- W[2]-complete [DF95]
 - W[2] \neq FPT \Rightarrow no algorithm in $f(k)n^{O(1)}$ time
- W[1]-complete if $|U| = \Theta(k^{O(1)} \log n)$.
 - [KLM19,Lin19] + This work
- Naïve algorithm:
 - enumerating all *k*-tuple of sets in $n^{O(k)}$ time
 - dynamic programming on subsets of *U* in $2^{O(|U|)}$ time

- "The set cover problem plays the same role in approximation algorithms that the maximum matching problem played in exact algorithms - as a problem whose study led to the development of fundamental techniques for the entire field."
 - Approximation Algorithms, by Vijay V. Vazirani

• A simple greedy algorithm reaches $(\ln n - \ln \ln n + \Theta(1))$ approximation ratio [Sla97].

Problem	Assumption	Hardness of Approx. Ratio		Running Time Bound	Reference & Comments	
SetCover	NP≠P	$(1-\varepsilon)\ln n$		<i>n</i> ⁰⁽¹⁾	[DS14]	
Parameterized SetCover	SETH	$(\log n)^{\frac{1}{k^{O(1)}}}$	$(1 - o(1)) \left(\frac{\log n}{\log \log n}\right)^{\frac{1}{k}}$	$f(k)n^{k-\varepsilon}$	[KLM19]	[Lin19]
	ETH			$f(k)n^{o(k)}$		
	<i>k-</i> SUM Hypothesis			$f(k)n^{\left\lfloor \frac{k}{2} \right floor - \varepsilon}$		
	W[1]≠FPT	$(\log n)^{\varepsilon(k)}$		$f(k)n^{O(1)}$		
	W[2]≠FPT	?		?		

• A simple greedy algorithm reaches $(\ln n - \ln \ln n + \Theta(1))$ approximation ratio [Sla97].

Problem	Assumption	Hardness of Approx. Ratio		Running Time Bound	Reference & Comments	
SetCover	NP≠P	$(1-\varepsilon)\ln n$		$n^{0(1)}$	[DS14]	
Parameterized SetCover	SETH	$(\log n)^{\frac{1}{k^{O(1)}}}$	$(1 - o(1)) \left(\frac{\log n}{\log \log n}\right)^{\frac{1}{k}}$	$f(k)n^{k-\varepsilon}$	[KLM19]	[Lin19]
	ETH			$f(k)n^{o(k)}$		
	<i>k-</i> SUM Hypothesis			$f(k)n^{\left\lfloor\frac{k}{2}\right floor-\varepsilon}$		
	W[1]≠FPT	$(\log n)^{\varepsilon(k)}$		$f(k)n^{O(1)}$		
	W[2]≠FPT	Any constant		$f(k)n^{O(1)}$	This work	

W[2]-hardness of Approx. *k*-SetCover

• A simple greedy algorithm reaches $(\ln n - \ln \ln n + \Theta(1))$ approximation ratio [Sla97].

Problem	Assumption	Hardness of Approx. Ratio	Running Time Bound	Reference	
SetCover	NP≠P	$(1-\varepsilon)\ln n$	$n^{O(1)}$	[DS14]	
Parameterized SetCover	SETH		$f(k)n^{k-\varepsilon}$		
	ETH	$\left(\frac{\log n}{\log \log n}\right)^{1/k}$	$f(k)n^{o(k)}$		
	<i>k-</i> SUM Hypothesis		$f(k)n^{\left\lfloor\frac{k}{2}\right floor-arepsilon}$	[KLM19, Lin19]	
	W[1]≠FPT	$(\log n)^{\varepsilon(k)}$	$f(k)n^{O(1)}$		
	W[2]≠FPT	?	?		

Approx. SetCover with Small OPT Size

Problem	Assumption	Hardness of Approx. Ratio	OPT Size	Technique	Reference
SetCover	NP≠P	$(1-\varepsilon)\ln n$	$\Omega(n)$	(Complex) PCP	[DS14]
	W[1]≠FPT	$o\left(\frac{\log n}{\log\log n}\right)$	O(poly log n)	New TGC	This work
	W[1]≠FPT	$(\log n)^{\varepsilon(k)}$	k	TGC / Distributed PCP	[KLM19, Lin19]

Our Technique

- Threshold Graph Composition [Lin18, CL19, Lin19, BBE+21]
 - exploited new properties of threshold graphs
 - used the construction from error-correcting codes [KN21]
 - discovered new composition scheme

Constant Approximating *k*-SetCover is W[2]-hard!

• Threshold Graph G_T : a bipartite graph $(A \cup B, E)$ with $A = A_1 \cup \cdots \cup A_k$ and $B = B_1 \cup \cdots \cup B_m$, satisfying

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• Threshold Graph G_T : a bipartite graph $(A \cup B, E)$ with $A = A_1 \cup \cdots \cup A_k$ and $B = B_1 \cup \cdots \cup B_m$, satisfying

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• Threshold Graph G_T : a bipartite graph $(A \cup B, E)$ with $A = A_1 \cup \cdots \cup A_k$ and $B = B_1 \cup \cdots \cup B_m$, satisfying

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• Threshold Graph G_T : a bipartite graph $(A \cup B, E)$ with $A = A_1 \cup \cdots \cup A_k$ and $B = B_1 \cup \cdots \cup B_m$, satisfying

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• Threshold Graph G_T : a bipartite graph $(A \cup B, E)$ with $A = A_1 \cup \cdots \cup A_k$ and $B = B_1 \cup \cdots \cup B_m$, satisfying

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• Threshold Graph G_T : a bipartite graph $(A \cup B, E)$ with $A = A_1 \cup \cdots \cup A_k$ and $B = B_1 \cup \cdots \cup B_m$, satisfying

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• Threshold Graph G_T : a bipartite graph $(A \cup B, E)$ with $A = A_1 \cup \cdots \cup A_k$ and $B = B_1 \cup \cdots \cup B_m$, satisfying

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• Threshold Graph G_T : a bipartite graph $(A \cup B, E)$ with $A = A_1 \cup \cdots \cup A_k$ and $B = B_1 \cup \cdots \cup B_m$, satisfying

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• Threshold Graph G_T : a bipartite graph $(A \cup B, E)$ with $A = A_1 \cup \cdots \cup A_k$ and $B = B_1 \cup \cdots \cup B_m$, satisfying

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• Threshold Graph G_T : a bipartite graph $(A \cup B, E)$ with $A = A_1 \cup \cdots \cup A_k$ and $B = B_1 \cup \cdots \cup B_m$, satisfying

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• Threshold Graph G_T : a bipartite graph $(A \cup B, E)$ with $A = A_1 \cup \cdots \cup A_k$ and $B = B_1 \cup \cdots \cup B_m$, satisfying

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• $\forall X \subseteq A \text{ if for } \varepsilon \text{ fraction of } i \in [m], \exists b_i \in B_i$ such that b_i has k + 1 neighbors in X, then |X| > h

• Threshold Graph G_T : a bipartite graph $(A \cup B, E)$ with $A = A_1 \cup \cdots \cup A_k$ and $B = B_1 \cup \cdots \cup B_m$, satisfying

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• $\forall X \subseteq A \text{ if } \text{for } \varepsilon \text{ fraction of } i \in [m], \exists b_i \in B_i$ such that b_i has k + 1 neighbors in X, then |X| > h

• Threshold Graph G_T : a bipartite graph $(A \cup B, E)$ with $A = A_1 \cup \cdots \cup A_k$ and $B = B_1 \cup \cdots \cup B_m$, satisfying

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• $\forall X \subseteq A \text{ if } \text{for } \varepsilon \text{ fraction of } i \in [m], \exists b_i \in B_i$ such that b_i has k + 1 neighbors in X, then |X| > h

• Threshold Graph G_T : a bipartite graph $(A \cup B, E)$ with $A = A_1 \cup \cdots \cup A_k$ and $B = B_1 \cup \cdots \cup B_m$, satisfying

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• $\forall X \subseteq A \text{ if for } \varepsilon \text{ fraction of } i \in [m], \exists b_i \in B_i$ such that b_i has k + 1 neighbors in X, then |X| > h

• Threshold Graph G_T : a bipartite graph $(A \cup B, E)$ with $A = A_1 \cup \cdots \cup A_k$ and $B = B_1 \cup \cdots \cup B_m$, satisfying

• Threshold Graph G_T : a bipartite graph $(A \cup B, E)$ with $A = A_1 \cup \cdots \cup A_k$ and $B = B_1 \cup \cdots \cup B_m$, satisfying

Threshold Graph Composition in [Lin19]

k-SetCover Instance $\Gamma = (S, U)$

YES Instance:

• $\exists S_1, \dots, S_k \in S$ which can cover U

NO Instance:

• any covering of *U* has size $\geq k + 1$

Threshold Graph $G_T = (A \cup B, E)$

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• $\forall X \subseteq A$: If $\forall i \in [m], \exists b_i \in B_i$ such that b_i has k + 1 neighbors in X, then |X| > h

c-gap *k*-SetCover Instance $\Gamma' = (S', U')$, where $|U'| = |U|^{|B_i|}$

YES Instance:

• $\exists S_1, \dots, S_k \in S'$ which can cover U'

NO Instance:

• any covering of *U* has size $\geq h$

Threshold Graph Composition

k-SetCover Instance $\Gamma = (\mathcal{S}, U)$

YES Instance:

• $\exists S_1, \dots, S_k \in S$ which can cover U

NO Instance:

• any covering of *U* has size $\geq k + 1$

Threshold Graph $G_T = (A \cup B, E)$

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• $\forall X \subseteq A \text{ if for } \varepsilon \text{ fraction of } i \in [m], \exists b_i \in B_i \text{ such that } b_i \text{ has } k + 1 \text{ neighbors in } X, \text{ then } |X| > ck'$

c-gap *k'*-SetCover Instance $\Gamma' = (S', U')$, where $|U'| = (|U||B_i|)^{O(c)}$

YES Instance:

• $\exists S_1, \dots, S_k, \in S'$ which can cover U'

NO Instance:

any covering of *U* has size > *ck*'

Threshold Graph Composition

k-SetCover Instance $\Gamma = (S, U)$

YES Instance:

• $\exists S_1, \dots, S_k \in S$ which can cover U

NO Instance:

• any covering of *U* has size $\geq k + 1$

Threshold Graph $G_T = (A \cup B, E)$

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• $\forall X \subseteq A \text{ if for } \varepsilon \text{ fraction of } i \in [m], \exists b_i \in B_i \text{ such that } b_i \text{ has } k + 1 \text{ neighbors in } X, \text{ then } |X| > ck'$

Our Reduction

- Treat every A_i as a copy of S.
- The new sets $S' = A \cup B$.
- The new universe U' has m parts $U'_1, ..., U'_m$.

Desired Property

For any $X \subseteq A$ and $Y \subseteq B$ can cover U'_i iff (1) either $\exists b_i \in Y \cap B_i$, s.t. $X \cap \mathcal{N}_{G_T}(b_i)$ cover U, (2) or $|Y \cap B_i| \ge c + 1$.

Analysis of the YES Case

YES Instance:

• $\exists S_1, \dots, S_k, \in S'$ which can cover U'

k-SetCover Instance $\Gamma = (S, U)$

YES Instance:

• $\exists S_1, \dots, S_k \in S$ which can cover U

NO Instance:

• any covering of *U* has size $\geq k + 1$

Threshold Graph $G_T = (A \cup B, E)$

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• $\forall X \subseteq A \text{ if for } \varepsilon \text{ fraction of } i \in [m], \exists b_i \in B_i \text{ such that } b_i \text{ has } k + 1 \text{ neighbors in } X, \text{ then } |X| > ck'$

Our Reduction

- Treat every A_i as a copy of S.
- The new sets $S' = A \cup B$.
- The new universe U' has m parts $U'_1, ..., U'_m$.

Desired PropertyFor any $X \subseteq A$ and $Y \subseteq B$ can cover U'_i iff(1) either $\exists b_i \in Y \cap B_i$, s.t. $X \cap \mathcal{N}_{G_T}(b_i)$ cover U,(2) or $|Y \cap B_i| \ge c + 1$.

In the YES case, it suffices to pick $S_1, ..., S_k$ and their common neighbors in every B_i .

In the NO case, one of the following holds:

- $(\# \text{ of } 1 \ge \varepsilon m) \Rightarrow |X| > ck'.$
- $(\# \text{ of } (2) \ge (1-\varepsilon)m) \Rightarrow |Y| \ge (c+1)(1-\varepsilon)m$,

Analysis of the NO case

NO Instance:

• any covering of *U* has size > *ck*'

k-SetCover Instance $\Gamma = (S, U)$

YES Instance:

• $\exists S_1, \dots, S_k \in S$ which can cover U

NO Instance:

• any covering of *U* has size $\geq k + 1$

Threshold Graph $G_T = (A \cup B, E)$

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• $\forall X \subseteq A \text{ if for } \varepsilon \text{ fraction of } i \in [m], \exists b_i \in B_i \text{ such that } b_i \text{ has } k + 1 \text{ neighbors in } X, \text{ then } |X| > ck'$

Our Reduction

- Treat every A_i as a copy of S.
- The new sets $S' = A \cup B$.
- The new universe U' has m parts U'_1, \ldots, U'_m .

Desired Property For any $X \subseteq A$ and $Y \subseteq B$ can cover U'_i iff (1) either $\exists b_i \in Y \cap B_i$, s.t. $|X \cap \mathcal{N}_{G_T}(b_i)| \ge k + 1$, (2) or $|Y \cap B_i| \ge c + 1$.

In the YES case, it suffices to pick $S_1, ..., S_k$ and their common neighbors in every B_i .

In the NO case, one of the following holds:

- $(\# \text{ of } \underline{1} \geq \varepsilon m) \Rightarrow |X| > ck'.$
- $(\# \text{ of } 2 \ge (1 \varepsilon)m) \Rightarrow |Y| \ge (c + 1)(1 \varepsilon)m$,

Analysis of the NO case

NO Instance:

• any covering of *U* has size > *ck*'

k-SetCover Instance $\Gamma = (S, U)$

YES Instance:

• $\exists S_1, \dots, S_k \in S$ which can cover U

NO Instance:

• any covering of *U* has size $\geq k + 1$

Threshold Graph $G_T = (A \cup B, E)$

Completeness:

• $\forall a_1 \in A_1, ..., a_k \in A_k$ and $i \in [m], a_1, ..., a_k$ have a common neighbor in B_i

Soundness:

• $\forall X \subseteq A \text{ if for } \varepsilon \text{ fraction of } i \in [m], \exists b_i \in B_i \text{ such that } b_i \text{ has } k + 1 \text{ neighbors in } X, \text{ then } |X| > ck'$

Our Reduction

- Treat every A_i as a copy of S.
- The new sets $S' = A \cup B$.
- The new universe U' has m parts U'_1, \ldots, U'_m .

Desired Property A and $V \subseteq B$ can cover U'_{i} iff

For any $X \subseteq A$ and $Y \subseteq B$ can cover U'_i iff (1) either $\exists b_i \in Y \cap B_i$, s.t. $|X \cap \mathcal{N}_{G_T}(b_i)| \ge k + 1$, (2) or $|Y \cap B_i| \ge c + 1$.

In the YES case, it suffices to pick $S_1, ..., S_k$ and their common neighbors in every B_i .

In the NO case, one of the following holds:

- $(\# \text{ of } (1) \ge \varepsilon m) \Rightarrow |X| > ck'.$
- $(\# \text{ of } (2) \ge (1-\varepsilon)m) \Rightarrow |Y| \ge (c+1)(1-\varepsilon)m,$

Summary

Theorem 1. Assuming W[2] \neq FPT, there is no FPT algorithm which can approximate *k*-SetCover within any constant ratio.

Theorem 2. Assuming W[1]≠FPT, there is no polynomial time algorithm which can approximate *k*-SetCover within $o\left(\frac{\log n}{\log \log n}\right)$ ratio, even if *k* is as small as $O\left(\frac{\log n}{\log \log n}\right)^3$.

Open Questions

Open Question 1. *Is it* W[2]*-hard to approximate* k*-SetCover within* $\omega(1)$ *ratio?*

• Our reduction has running time $\Omega(|U|^c)$, thus can not get super-constant inapproximability.

Open Question 2. *Is there any FPT algorithm which can approximate k-SetCover with approximation ratio* $o(\log n)$?

• Current best lower bound is $(\log n)^{\varepsilon(k)}$ for any function $\varepsilon(k) = o(1)$.

• Thanks!