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Input: 𝒮, 𝑈 , where 𝒮 is a collection of 𝑛 sets 𝑆!, … , 𝑆" over the universe 𝑈.
Output: find the smallest number of sets in 𝒮, whose union is 𝑈.

• Equivalent view:
• Given a bipartite graph 𝐺 = (𝒮 ∪ 𝑈, 𝐸 = {(𝑆% , 𝑢)|𝑢 ∈ 𝑆%}), find the 

smallest number of left vertices, whose neighbors’ union is 𝑈.

• Example:
• 𝑈 = {1,2,3,4,5}, 𝒮 = 𝑆! = 1,2 , 𝑆" = 2,3,4 , 𝑆$ = 1,4 , 𝑆# = 5
• Answer: 3 (𝑆!, 𝑆", 𝑆#).
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• NP-complete [Kar72]

Input: 𝒮, 𝑈 , where 𝒮 is a collection of 𝑛 sets 𝑆!, … , 𝑆" over the universe 𝑈.
Output: find the smallest number of sets in 𝒮, whose union is 𝑈.



Parameterized SetCover Problem

• W[2]-complete [DF95]
• W[2]≠FPT ⇒ no algorithm in 𝑓 𝑘 𝑛& ! time

• W[1]-complete if 𝑈 = Θ(𝑘!(#) log 𝑛). 
• [KLM19,Lin19] + This work 

• Naïve algorithm:
• enumerating all k-tuple of sets in 𝑛&(() time
• dynamic programming on subsets of 𝑈 in 2&( * ) time

Input: 𝒮, 𝑈, 𝑘 , where 𝒮 is a collection of 𝑛 sets 𝑆!, … , 𝑆" over the universe 𝑈.
Output: find the smallest number of sets in 𝒮, whose union is 𝑈. It’s guaranteed that the optimum is 𝑘.

W[2] W[1]
𝑘-Clique

𝑘-SetCover
𝑘-SetCover
(small 𝑈)

𝒌-SetCover



Approximation of SetCover Problem

• “The set cover problem plays the same role in 
approximation algorithms that the maximum 
matching problem played in exact algorithms 
- as a problem whose study led to the 
development of fundamental techniques for 
the entire field.”

- Approximation Algorithms, by Vijay V. Vazirani



Problem Assumption Hardness of Approx. Ratio Running Time 
Bound

Reference & 
Comments

SetCover NP≠P 1 − 𝜀 ln 𝑛 𝑛&(!) [DS14]
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Approximation of SetCover Problem
• A simple greedy algorithm reaches (ln 𝑛 − ln ln 𝑛 + Θ(1)) approximation ratio [Sla97].
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Approx. SetCover with Small OPT Size

Problem Assumption Hardness of 
Approx. Ratio OPT Size Technique Reference

SetCover

NP≠P 1 − 𝜀 ln 𝑛 Ω(𝑛) (Complex) PCP [DS14]

W[1]≠FPT 𝑜
log 𝑛

log log 𝑛
𝑂(poly	log	𝑛) New TGC This work

W[1]≠FPT log 𝑛 0(() 𝑘 TGC / Distributed 
PCP [KLM19, Lin19]



Our Technique
• Threshold Graph Composition [Lin18, CL19, Lin19, BBE+21]

• exploited new properties of threshold graphs
• used the construction from error-correcting codes [KN21]
• discovered new composition scheme

Constant Approximating 
k-SetCover is W[2]-hard!

k-SetCover
Instance

Threshold 
Graphs

Constant Gap 
k’-SetCover

Instance
+ =



Threshold Graph in [Lin19]
• Threshold Graph 𝐺%: a bipartite graph (𝐴 ∪ 𝐵, 𝐸) with 𝐴 = 𝐴# ∪⋯∪ 𝐴& and 𝐵 = 𝐵# ∪

⋯∪ 𝐵', satisfying
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Completeness: 
• ∀𝑎! ∈ 𝐴!, … , 𝑎( ∈ 𝐴( and 𝑖 ∈ 𝑚 , 𝑎!, … , 𝑎( 

have a common neighbor in 𝐵%

Soundness:
• ∀𝑋 ⊆ 𝐴 if ∀𝑖 ∈ 𝑚 , ∃𝑏% ∈ 𝐵% such that 𝑏% has 
𝑘 + 1 neighbors in 𝑋, then 𝑋 > ℎ
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• Such threshold graphs can be constructed via error 
correcting codes with benign distance [KN21]!
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Threshold Graph Composition in [Lin19]

Soundness:
• ∀𝑋 ⊆ 𝐴 : If ∀𝑖 ∈ [𝑚],	∃𝑏% ∈ 𝐵% such that 𝑏% has 
𝑘 + 1 neighbors in 𝑋, then 𝑋 > ℎ

Completeness: 
• ∀𝑎! ∈ 𝐴!, … , 𝑎( ∈ 𝐴( and 𝑖 ∈ 𝑚 , 𝑎!, … , 𝑎( have 

a common neighbor in 𝐵%

Threshold Graph 𝐺% = (𝐴 ∪ 𝐵, 𝐸)

𝑘-SetCover Instance Γ = (𝒮, 𝑈)
YES Instance:
• ∃𝑆!, … , 𝑆( ∈ 𝒮 which can cover 𝑈
NO Instance:
• any covering of 𝑈 has size ≥ 𝑘 + 1 𝑐-gap 𝑘-SetCover Instance Γ( = 𝒮(, 𝑈( ,

where 𝑈( = 𝑈 |*#|

YES Instance:
• ∃𝑆!, … , 𝑆( ∈ 𝒮′ which can cover 𝑈′
NO Instance:
• any covering of 𝑈 has size ≥ ℎ



Threshold Graph Composition

Soundness:
• ∀𝑋 ⊆ 𝐴 if for 𝜀 fraction	of	𝑖 ∈ 𝑚 , ∃𝑏% ∈ 𝐵% such 

that 𝑏% has 𝑘 + 1 neighbors in 𝑋, then 𝑋 > 𝑐𝑘′

Completeness: 
• ∀𝑎! ∈ 𝐴!, … , 𝑎( ∈ 𝐴( and 𝑖 ∈ 𝑚 , 𝑎!, … , 𝑎( have 

a common neighbor in 𝐵%

Threshold Graph 𝐺% = (𝐴 ∪ 𝐵, 𝐸)

𝑘-SetCover Instance Γ = (𝒮, 𝑈)
YES Instance:
• ∃𝑆!, … , 𝑆( ∈ 𝒮 which can cover 𝑈
NO Instance:
• any covering of 𝑈 has size ≥ 𝑘 + 1 𝑐-gap 𝑘′-SetCover Instance Γ′ = (𝒮′, 𝑈′)

YES Instance:
• ∃𝑆!, … , 𝑆(4 ∈ 𝒮′ which can cover 𝑈′
NO Instance:
• any covering of 𝑈 has size ≥ 𝑐𝑘′ for some 𝑐

𝑐-gap 𝑘′-SetCover Instance Γ( = 𝒮(, 𝑈( ,
where 𝑈( = ( 𝑈 𝐵+ )!(,)

YES Instance:
• ∃𝑆!, … , 𝑆(4 ∈ 𝒮′ which can cover 𝑈′
NO Instance:
• any covering of 𝑈 has size > 𝑐𝑘′



Our Reduction
• Treat every 𝐴+ as a copy of 𝒮.
• The new sets 𝒮′ = 𝐴 ∪ 𝐵.
• The new universe 𝑈′ has 𝑚 parts 𝑈#( , … , 𝑈'( .

Desired Property
For any 𝑋 ⊆ 𝐴 and 𝑌 ⊆ 𝐵 can cover 𝑈+( iff
① either ∃𝑏+ ∈ 𝑌 ∩ 𝐵+, s.t. 𝑋 ∩𝒩-$ 𝑏+ cover 𝑈,
② or 𝑌 ∩ 𝐵+ ≥ 𝑐 + 1.

Completeness: 
• ∀𝑎! ∈ 𝐴!, … , 𝑎( ∈ 𝐴( and 𝑖 ∈ 𝑚 , 𝑎!, … , 𝑎( have 

a common neighbor in 𝐵%

𝑘-SetCover Instance Γ = (𝒮, 𝑈)

Threshold Graph Composition

Threshold Graph 𝐺% = (𝐴 ∪ 𝐵, 𝐸)

YES Instance:
• ∃𝑆!, … , 𝑆( ∈ 𝒮 which can cover 𝑈
NO Instance:
• any covering of 𝑈 has size ≥ 𝑘 + 1

Soundness:
• ∀𝑋 ⊆ 𝐴 if for 𝜀 fraction	of	𝑖 ∈ [𝑚],	∃𝑏% ∈ 𝐵% such 

that 𝑏% has 𝑘 + 1 neighbors in 𝑋, then 𝑋 > 𝑐𝑘′



Our Reduction
• Treat every 𝐴+ as a copy of 𝒮.
• The new sets 𝒮′ = 𝐴 ∪ 𝐵.
• The new universe 𝑈′ has 𝑚 parts 𝑈#( , … , 𝑈'( .

Desired Property
For any 𝑋 ⊆ 𝐴 and 𝑌 ⊆ 𝐵 can cover 𝑈+( iff
① either ∃𝑏+ ∈ 𝑌 ∩ 𝐵+, s.t. 𝑋 ∩𝒩-$ 𝑏+ cover 𝑈,
② or 𝑌 ∩ 𝐵+ ≥ 𝑐 + 1.

In the YES case, it suffices to pick 𝑆#, … , 𝑆& and 
their common neighbors in every 𝐵+.

𝑘-SetCover Instance Γ = (𝒮, 𝑈)

Analysis of the YES Case

Threshold Graph 𝐺% = (𝐴 ∪ 𝐵, 𝐸)

YES Instance:
• ∃𝑆!, … , 𝑆( ∈ 𝒮 which can cover 𝑈
NO Instance:
• any covering of 𝑈 has size ≥ 𝑘 + 1

Completeness: 
• ∀𝑎! ∈ 𝐴!, … , 𝑎( ∈ 𝐴( and 𝑖 ∈ 𝑚 , 𝑎!, … , 𝑎( have 

a common neighbor in 𝐵%
Soundness:
• ∀𝑋 ⊆ 𝐴 if for 𝜀 fraction	of	𝑖 ∈ [𝑚],	∃𝑏% ∈ 𝐵% such 

that 𝑏% has 𝑘 + 1 neighbors in 𝑋, then 𝑋 > 𝑐𝑘′



Completeness: 
• ∀𝑎! ∈ 𝐴!, … , 𝑎( ∈ 𝐴( and 𝑖 ∈ 𝑚 , 𝑎!, … , 𝑎( have 

a common neighbor in 𝐵%

Our Reduction
• Treat every 𝐴+ as a copy of 𝒮.
• The new sets 𝒮′ = 𝐴 ∪ 𝐵.
• The new universe 𝑈′ has 𝑚 parts 𝑈#( , … , 𝑈'( .

Desired Property
For any 𝑋 ⊆ 𝐴 and 𝑌 ⊆ 𝐵 can cover 𝑈+( iff
① either ∃𝑏+ ∈ 𝑌 ∩ 𝐵+, s.t. |𝑋 ∩𝒩-$ 𝑏+ | ≥ 𝑘 + 1,
② or 𝑌 ∩ 𝐵+ ≥ 𝑐 + 1.

NO Instance:
• any covering of 𝑈 has size ≥ 𝑘 + 1

Soundness:
• ∀𝑋 ⊆ 𝐴 if for 𝜀 fraction	of	𝑖 ∈ [𝑚],	∃𝑏% ∈ 𝐵% such 

that 𝑏% has 𝑘 + 1 neighbors in 𝑋, then 𝑋 > 𝑐𝑘′

In the NO case, one of the following holds:
• (# of ①≥ 𝜀𝑚) ⇒ 𝑋 > 𝑐𝑘′.
• (# of ②≥ (1 − 𝜀)𝑚) ⇒ |𝑌| ≥ (𝑐 + 1)(1 − 𝜀)𝑚,

𝑘-SetCover Instance Γ = (𝒮, 𝑈)

Analysis of the NO case

YES Instance:
• ∃𝑆!, … , 𝑆( ∈ 𝒮 which can cover 𝑈

Threshold Graph 𝐺% = (𝐴 ∪ 𝐵, 𝐸)



Our Reduction
• Treat every 𝐴+ as a copy of 𝒮.
• The new sets 𝒮′ = 𝐴 ∪ 𝐵.
• The new universe 𝑈′ has 𝑚 parts 𝑈#( , … , 𝑈'( .

Desired Property
For any 𝑋 ⊆ 𝐴 and 𝑌 ⊆ 𝐵 can cover 𝑈+( iff
① either ∃𝑏+ ∈ 𝑌 ∩ 𝐵+, s.t. |𝑋 ∩𝒩-$ 𝑏+ | ≥ 𝑘 + 1,
② or 𝑌 ∩ 𝐵+ ≥ 𝑐 + 1.

NO Instance:
• any covering of 𝑈 has size ≥ 𝑘 + 1

Soundness:
• ∀𝑋 ⊆ 𝐴 if for 𝜀 fraction	of	𝑖 ∈ [𝑚],	∃𝑏% ∈ 𝐵% such 

that 𝑏% has 𝑘 + 1 neighbors in 𝑋, then 𝑋 > 𝑐𝑘′

𝑘-SetCover Instance Γ = (𝒮, 𝑈)

Analysis of the NO case

YES Instance:
• ∃𝑆!, … , 𝑆( ∈ 𝒮 which can cover 𝑈

Threshold Graph 𝐺% = (𝐴 ∪ 𝐵, 𝐸)

Completeness: 
• ∀𝑎! ∈ 𝐴!, … , 𝑎( ∈ 𝐴( and 𝑖 ∈ 𝑚 , 𝑎!, … , 𝑎( have 

a common neighbor in 𝐵%

In the NO case, one of the following holds:
• (# of ①≥ 𝜀𝑚) ⇒ 𝑋 > 𝑐𝑘′.
• (# of ②≥ (1 − 𝜀)𝑚) ⇒ |𝑌| ≥ (𝑐 + 1)(1 − 𝜀)𝑚,



Summary
Theorem 1. Assuming W[2]≠FPT, there is no FPT algorithm which can approximate 𝑘-SetCover 
within any constant ratio. 

Theorem 2. Assuming W[1]≠FPT, there is no polynomial time algorithm which can approximate 

𝑘-SetCover within 𝑜 ./0 1
./0 ./0 1

 ratio, even if 𝑘 is as small as 𝑂 ./0 1
./0 ./0 1

2
.



Open Questions
Open Question 1. Is it W[2]-hard to approximate 𝑘-SetCover within 𝜔(1) ratio? 

• Our reduction has running time Ω(|𝑈|,), thus can not get super-constant inapproximability.

Open Question 2. Is there any FPT algorithm which can approximate 𝑘-SetCover with approximation 
ratio 𝑜(log 𝑛)?

• Current best lower bound is log 𝑛 3(&) for any function 𝜀 𝑘 = 𝑜(1).



Q&A

• Thanks!


