On Lower Bounds of Approximating Parameterized *k*-Clique

Bingkai Lin, Xuandi Ren, Yican Sun, Xiuhan Wang

k-Clique Problem

• Given a graph *G* with a positive integer *k*, decide if G contains K_k —a complete subgraph of size *k*

- In the *c*-approximation (c-gap) version, distinguish between:
 - *G* has *k*-clique
 - *G* has no *k*/*c*-clique

Densest *k***-Subgraph:** Given a graph *G* and a positive integer *k*, choose *k* vertices such that they induce as many edges as possible

c-approximation version: distinguish

- *G* has *k*-clique
- Any *k* vertices induce at most $\binom{k}{2}/c$ edges

Parameterized Inapproximability Hypothesis [Lokshtanov-Ramanujan-
Saurabh-Zehavi'20]There is no constant approximation $FPT(f(k) \cdot n^{0(1)}-time)$ algorithm for
Densest k-SubgraphParameterized

PCP-theorem!

PIH and Gap *k*-Clique

Open problem [Feldmann-Karthik-Lee-Manurangsi'20]: Does **PIH** hold if we assume that constant Gap *k*-Clique has no **FPT** algorithm?

- **Result 1:** An $f(k) \cdot n^{\Omega(\frac{k}{\log k})}$ -time lower bound for constant approximating *k*-Clique would imply PIH.
 - A new potential way to prove **PIH**.

Previous Works for Gap-*k*-Clique

Complexity Assumption	Inapproximability Ratio	Time Lower Bound	Reference
Gap-ETH	$\rho = o(k)$	$f(k) \cdot n^{\Omega\left(rac{k}{ ho} ight)}$	[CCK+17]
ETH	Any constant	$f(k) \cdot n^{\Omega\left(\sqrt[6]{\log k}\right)}$	[Lin21]
W[1]≠FPT	Any constant	$f(k) \cdot n^{\Omega(1)}$	[Lin21]
	$\rho = k^{o(1)}$	$f(k) \cdot n^{\Omega(1)}$	[KK22]
PIH	Any constant	$f(k) \cdot n^{\Omega(1)}$	[LRSZ20]

Our Results

Complexity Assumption	Inapproximability Ratio	Time Lower Bound	Reference
Gap-ETH	$\rho = o(k)$	$f(k) \cdot n^{\Omega\left(\frac{k}{ ho} ight)}$	[CCK+17]
ETH	Any constant	$f(k) \cdot n^{\Omega\left(\sqrt[6]{\log k}\right)}$	[Lin21]
	Any constant	$f(k) \cdot n^{\Omega(\log k)}$	Result 2 of This Work
	$\rho = k^{o(1)}$	$f(k) \cdot n^{\Omega(1)}$	Result 3 of This Work
W[1]≠FPT	Any constant	$f(k) \cdot n^{\Omega(1)}$	[Lin21]
	$\rho = k^{o(1)}$	$f(k) \cdot n^{\Omega(1)}$	[KK22]
PIH	Any constant	$f(k) \cdot n^{\Omega(1)}$	[LRSZ20]

Our Techniques

Our Techniques

From Gap *k*-Clique to Gap-Densest-*k*-Subgraph

Result 1 An $f(k) \cdot n^{\Omega(\frac{k}{\log k})}$ -time lower bound for constant approximating *k*-Clique would imply PIH.

From Gap *k*-Clique to Gap-Densest-*k*-Subgraph

Our Techniques

Reducing 3SAT to k-VectorSum

3SAT Input: a CNF ϕ with *n* variables, *m* clauses **Goal:** decide if ϕ is satisfiable


```
k-Vector Sum Problem
Input: V_1, ..., V_k \subseteq \mathbb{F}^m
Goal: Decide if \exists u_1 \in V_1, ..., u_k \in V_k,
such that \sum_{i \in [k]} u_i = 0.
```

- **ETH**: 3SAT has no $2^{o(n)}$ -time algorithm
- $N \triangleq |V_i| = 2^{O(n/k)}$
- **ETH** \Rightarrow *k*-Vector Sum has no $N^{o(k)}$ -time algorithm

Main idea:

- WLOG, assume that each variable appear in at most 3 clauses
- Split *m* clauses into *k* groups with m/k clauses each
- vector set in $V_i \Leftrightarrow$ assignment to *i*-th group + pairwise consistency bits for each variable

Pairwise consistency: if $x_i = 0$, the corresponding coordinates are 0, 0; if $x_i = 1$, the corresponding coordinates are 1, -1.

Reducing 3SAT to k-VectorSum

Reducing 3SAT to k-VectorSum

Reducing *k*-Vector Sum to Gap-Clique

Lemma

(Yes) If *k*-Vector Sum has a solution $v_1 \in V_1, ..., v_k \in V_k$, then $x_{a_1,...,a_k} =$

 $\sum a_i v_i$ satisfies all constraints.

(No) If *k*-Vector Sum has no solution, then for every assignment

- Either *ε*-fraction of the type a. constraints are not satisfied;
- Or ∃ a matching of variables s.t. *ε*-fraction of the matchings are not satisfied.

Dimension Reduction

Dimension reduction:

- $x_{a_1\dots a_k} \in \mathbb{F}^m$
- $m = k \log n$
- $|\mathbb{F}|^{k \log n}$ is too large
- Let $\ell = k + \log n$
- Pick $A_1, \dots A_\ell \in \mathbb{F}^{k \times m}$ randomly
- Let $y_{\vec{\alpha},\vec{\beta}} = f(\vec{\alpha}, x_{\vec{\beta}}) \stackrel{\text{def}}{=} (\vec{\alpha}A_1 x_{\vec{\beta}}, \dots, \vec{\alpha}A_l x_{\vec{\beta}}) \in \mathbb{F}^{\ell}$
- Add new constraints

New Constraints:

a. Test if
$$y_{\vec{\alpha},\vec{\beta}}$$
 is vector-valued degree-2 polynomial in terms of $\vec{\alpha}$ and $\vec{\beta}$
b. Test if $y_{\vec{\alpha}+\vec{\gamma},\vec{\beta}} = y_{\vec{\alpha},\vec{\beta}} + y_{\vec{\gamma},\vec{\beta}}$ and $y_{\vec{\alpha},\vec{\beta}+\vec{\gamma}} = y_{\vec{\alpha},\vec{\beta}} + y_{\vec{\alpha},\vec{\gamma}}$.
c. For all $i \in [k]$, test if $y_{\vec{\alpha},\vec{\beta}+\vec{e_i}} - y_{\vec{\alpha},\vec{\beta}} = f(\vec{\alpha}, v_i)$, for some $v_i \in V_i$
d. Test if $y_{\vec{\alpha},\vec{\beta}+\vec{1}} - y_{\vec{\alpha},\vec{\beta}} = 0$

Conclusion

Our results:

- $n^{\Omega(\frac{k}{\log k})}$ -time lower bound for constant Gap *k*-Clique \Rightarrow **PIH**
- **ETH** \Rightarrow $f(k) \cdot n^{\Omega(\log k)}$ -time lower bound for constant Gap *k*-Clique

Open problems:

- Improve lower bounds for constant Gap *k*-Clique
- 2^{*o*(*n̂*)}-time lower bound for non-parameterized constant Gap Clique

Thanks for listening!