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k-Clique Problem

Input: an undirected graph G = (V, E), an integer k.
Output: whether there is a clique of size k in G.




k-Clique Problem

Input: an undirected graph G = (V, E), an integer k.
Output: whether there is a clique of size k in G.

e Letn = |V|, then k-Clique problem is
* NP-complete
» does not admit n°@ time algorithm assuming NP=P
* W[1]-complete
« does not admit f (k) - n°M time algorithm assuming W[1]#FPT




Hardness of Approximating k-Clique

* A c-approximation algorithm for k-Clique can:
« find a clique of size k/c whenever there is a clique of size k in G.

* (equivalently) distinguish between: G has a k-clique, or G has no (k/c)-clique.

%4 . \
/ Approximating Clique 1s Almost NP-Complete. FOCS 1991 {: est gg)g'srggzﬁwari}\

Godel Prize
2001

Uriel Feige, Shafi Goldwasser, Laszl6 Lovasz, Shmuel Safra, Mario Szegedy

* The first polynomial time inapproximability of k-Clique
K * Motivated the discovery of the PCP theorem /




Hardness of Approximating k-Clique

 After a long line of work

n'~€-approximating k-Clique is NP-hard

« New research problem from parameterized complexity

Does k-Clique have f (k) - n°*/Y(®)) time y (k)-approximation algorithm?



Hardness of Approximating k-Clique

« New research problem from parameterized complexity

Does k-Clique have f (k) - n°*/Y(®)) time y (k)-approximation algorithm?

* Polynomial time inapproximability does not rule out n°*/¥(¥) time algorithm.

« Assuming Gap-ETH, the answer is NO.

* It is more interesting to prove inapproximability under ETH:

From Gap-k-Clique to PIH

k

An f(k) - nw(m) -time lower bound for constant approximating k-Clique would imply PIH.

/

Parameterized Inapproximability Hypothesis

2CSP with k variables and alphabet size n has no
(1 — €)-approximation algorithm in f(k) - n°® time.




Hardness of Approximating k-Clique

« New research problem from parameterized complexity

Does k-Clique have f (k) - n°*/Y(®)) time y (k)-approximation algorithm?

* Polynomial time inapproximability does not rule out n°*/¥(¥) time algorithm.
« Assuming Gap-ETH, the answer is NO.

It is more interesting to prove inapproximability under ETH:

From Gap-k-Clique to PIH [This Work]
An f(k) - n®(VE)_time lower bound for constant approximating k-Clique would imply PIH.

Open problem:
Prove that ETH = k-Clique has no f (k) - n°V®) time constant approximation

* Need a good parameterized gap-producing reduction for k-Clique



Parameterized Gap-producing Reduction

/ Parameterized Gap-producing Reduction R )

Given a graph G and k, R outputs G’ and k' = f(k) s.t.
 If G contains a k-clique, then G’ contains a k’-clique
N If G contains no k-clique, then G’ contains no (k'/ 2)—cliqu9

K, < G Ki, € G'
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[This work]

( Parameterized Gap-producing Reduction R
Given a graph G and k, R outputs G’ and k'

~

' : = f(k) s.t. G)
 If G contains a k-clique, then G’ contains a k’-clique 2 o

N If G contains no k-clique, then G’ contains no (k'/2)- chque
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Improved Hardness of Approximating k-Clique under ETH, o [/ = [0 (loglog k)
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Gap = q = (k')°™

R runs in
F()|G1°D time
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Overview of Previous Results

Work

Assumption

Lower Bound for Constant

Inapproximability Ratio in

Approximation FPT time
WI[1]#FPT no FPT 0(1)
[Lin"21]
ETH no f (k) - n°(og”* k) /
[Lin-Ren-Sun-Wang'22] ETH no f (k) - n°{108%) any ko)
[Karthik-Khot'22] WI[1]#FPT no FPT any k°@
[Chen-Feng-Laekhanukit-Liu'23]|  W[1]#FPT no FPT any ko)
[ThiS WOI‘k] ETH no f(k) . nko(l/ log log k) some kl_o(l)




Improved Hardness of Approximating k-Clique under ETH o [/ = kO (loglog k) R runs in
[This work] . 0.54 .
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Improved Hardness of Approximating k-Clique under ETH o [/ = kO (loglogk) R runs in
k 0.54
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k-Clique Vector CSP Gap-k'-Clique
Vi,ooy Vie,S12, o) Sie—1x © F9
K, ¢ G v, € VY, ..., €V, Ko S G'
Vl,_] € [k],vi + Uj € Sl] .
Viseeor Vier S12y ooor Sk—1x S F® ,
Kk _¢_ G 1 k»212 k—-1k -¢_ G

‘v’v1 € Vl, N (S Vk, Kk’/Z
Hl,] € [k],vl' + vj & Sl] .




[This work]

k-Clique

Yican Sunt Xiuhan Wang?$

Vector CSP

Vi,ooy Vie,S12, o) Sie—1x © F9
v, € V4, ...,V EV,
Vl,_] € [k],vi + Uj € Sl] .

Vi,.ooy Vie,S12, o) Se—1x © F9
‘v’v1 € Vl, N (S Vk,
Hl,] € [k],vl' + vj € Sl] .

Improved Hardness of Approximating k-Clique under ETH o [/ = kO (loglogk) R runs in
+ Gap =0(1) fF0IG

K** time

e AssumeV(G) =U,U--UU, S ™
 Pick random matrices A4, ..., Aj € F&*™

e Vi={Au:ue€eU;}
 Sij={Aiut+Ajv:uelU;,v e U;uv € E(G)}

Theorem: when d = 0(logn/log |F|), w.h.p.
« Vdifferentu,u’ € U;, A;u # A;u’
* Vdifferent (v,u), (v',u’) € U;XU;

Aiv + Aju # Ay’ + Aju'

!

Vector CSP with d = O(logn /log |F|) is W[1]-
hard, and has no n°® algorithms under ETH!
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Improved Hardness of Approximating k-Clique under ETH o [/ = kO (loglogk) R runs in
k 0.54

[This work]

Bingkai Lin * Xuandi Ren' Yican Sunt Xiuhan Wang?$ 1 Gap - 0(1) f (k ) | Gl time
Vector CSP Gap-k'-Clique
Vi,ooy Vie,S12, o) Sie—1x © F9
Key < G'
Theorem: Given a Parallel Locally Testable 31.71. EVi, ..., v € Vg, f
and Decodable Code Vi,j € lk]vi+v; €Sy
C:Fk - 3K

There is a reduction from Vector CSP to Gap-
k'-Clique. P

Vi,eooy Vi, S12, o) Sk—1x € F ¢ c

‘v’v1 € Vl, N (S Vk, Kk’/Z
Hl,] € [k],vl' + vj & Sl] .




Parallel Locally Testable and Decodable Code

d
N
co A , Parallel Locally Testable
vl €24 " [wil [ vali] vi[d] Vi €21 and Decodable Code
| €3, V(1] [valil va[d] v, € 2¢ (PLTDC)
e < e <
A= ] ol wild] v € Xf
\_ 1 _ L* L] i K
Locally Testable and C C cOd
Decodable Code <k
"z u| € 22 a uq[1] uy [i] u, [d] u; € Zg
u,| € %, u (1] uzi] u [d] u, € x4
"< n <
L [w] €2, L [w uali] wdl|  u, €25




Parallel Locally Testable and Decodable Code

/
k<
N
Locally Testable and C
Decodable Code
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d
N
co A 4 Parallel Locally Testable
vi[1] vali] vi[d] Vi €21 and Decodable Code
va[1] vali] vald] v, € 2¢ (PLTDC)
- d
vie[1] vic[i] vicld] v € X7
cil l cOd
45
uy[1] uy [i] u, [d] u; € Zg
_ ; Key Features:
ol el o] vuz\ + Parallel local testability
*  2-Query parallel local
decodability for v; and
v; + Uj
Smoothness
Example:
u,[1] up[i] u,[d]] u, € Zg + Hadamard Code




From Vec-CSP to Gap-Clique using PLTDC

Vector CSP
Input: V3,..., Vi, 812, ..., Sk—1x © IF‘?,
distinguish between
(yes) v, €V, ..., vk € Vg,
Vl,] € [k],vi + vj € SU .
(no) Vv, €V, ...,v, EVy,
3i,j € [k],v;+v; €5;; .

PLTDC
Vi E ]Fgl
\ = ]Fgl

Vk E]Fil

d Testing
uy € ]FZ queries

u; E[Fg

Decodin

queries uk’ E ]Fg

Gap-Clique

assignments accepted
by the testing query
A

[ |

ql — (urll» urlz’ uT'lg)

Ny

qZ — (uT21’ urzz’u'r23)

Two types of non-Edges

Fails Consistency check
Decoding result violates the
Vector CSP constraint

qT = (uTT]_' uT'Tz’ uTTg)
T: # of randomness in local testing




PLTDC from Derivative Code

Recall PLTDC: a code mapping Z¥ to T¥’, satisfying

 Parallel local testability
* 2-Query parallel local decodability

Derivative Code

: an extension of the Reed-Muller Code

Code K’ >,
Hadamard Code (Zl)k >4
Derivative Code with degree 3 (21) Vk (21) k41
Derivative Code with degree ©(log k) k@(log log k) (21)k0-54




Conclusion and Open Problem

Contributions

A framework to prove hardness of gap k-Clique
A PLTDC is all you need!

* Improved lower bound and inapproximability ratio under ETH

e f(k)- k1B 18 e lower bound for constant approximation
« k17°() jnapproximability ratio in FPT time

« Tighter connection: f (k) n® (k) time lower bound for constant gap k-Clique = PIH
Open problem
+ f(k) - n°0K) time lower bound for constant gap k-Clique under ETH?

Thank Yout



