

Improved Hardness of Approximating *k-Clique* under *ETH*

Bingkai Lin, Xuandi Ren, Yican Sun, Xiuhan Wang Nanjing U, UC Berkeley, Peking U, Tsinghua U November 2023

k-Clique Problem

Input: an undirected graph G = (V, E), an integer k. **Output:** whether there is a clique of size k in G.

k-Clique Problem

Input: an undirected graph G = (V, E), an integer k. **Output:** whether there is a clique of size k in G.

- Let n = |V|, then k-Clique problem is
 - NP-complete [Karp'72]
 - does not admit $n^{O(1)}$ time algorithm assuming NP \neq P
 - W[1]-complete [Downey-Fellows'95]
 - does not admit $f(k) \cdot n^{O(1)}$ time algorithm assuming W[1] \neq FPT

- A *c*-approximation algorithm for *k*-Clique can:
 - find a clique of size k/c whenever there is a clique of size k in G.
 - (equivalently) distinguish between: G has a k-clique, or G has no (k/c)-clique.

Approximating Clique is Almost NP-Complete. FOCS 1991

Interactive Proofs and the Hardness of Approximating Cliques. **JACM** 1996

Mario Szegedy

Gödel Prize

Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra,

- The first polynomial time inapproximability of k-Clique
- Motivated the discovery of the PCP theorem

• After a long line of work [BGLR93, BS94, FGLSS96, Has96, BGS97, Gol98, FK00, Zuc07]:

 $n^{1-\epsilon}$ -approximating k-Clique is NP-hard

New research problem from parameterized complexity

Does k-Clique have $f(k) \cdot n^{o(k/\gamma(k))}$ time $\gamma(k)$ -approximation algorithm?

New research problem from parameterized complexity

Does *k*-Clique have $f(k) \cdot n^{o(k/\gamma(k))}$ time $\gamma(k)$ -approximation algorithm?

- Polynomial time inapproximability does not rule out $n^{o(k/\gamma(k))}$ time algorithm.
- Assuming Gap-ETH, the answer is NO. [CCK+'17]
- It is more interesting to prove inapproximability under ETH:

```
From Gap-k-Clique to PIH [LRSW'22]
```

An $f(k) \cdot n^{\omega(\frac{k}{\log k})}$ -time lower bound for constant approximating k-Clique would imply PIH.

Parameterized Inapproximability Hypothesis

[Lokshtanov-Ramanujan-Saurabh-Zehavi'20]:

2CSP with k variables and alphabet size n has no $(1 - \epsilon)$ -approximation algorithm in $f(k) \cdot n^{O(1)}$ time.

New research problem from parameterized complexity

Does *k*-Clique have $f(k) \cdot n^{o(k/\gamma(k))}$ time $\gamma(k)$ -approximation algorithm?

- Polynomial time inapproximability does not rule out $n^{o(k/\gamma(k))}$ time algorithm.
- Assuming Gap-ETH, the answer is NO. [CCK+'17]
- It is more interesting to prove inapproximability under ETH:

From Gap-k-Clique to PIH [This Work]

An $f(k) \cdot n^{\omega(\sqrt{k})}$ -time lower bound for constant approximating k-Clique would imply PIH.

Open problem:

Prove that ETH \Rightarrow *k*-Clique has no $f(k) \cdot n^{O(\sqrt{k})}$ time constant approximation

• Need a good **parameterized gap-producing reduction** for *k*-Clique

Parameterized Gap-producing Reduction

Parameterized Gap-producing Reduction R

Given a graph G and K, K outputs G' and K' = f(K) s.t.

- If G contains a k-clique, then G' contains a k'-clique
- If G contains no k-clique, then G' contains no (k'/2)-clique

Parameterized Gap-producing Reduction R

Given a graph G and K, K outputs G' and K' = f(K) s.t.

- If G contains a k-clique, then G' contains a k'-clique
- If G contains no k-clique, then G' contains no (k'/2)-clique

[Lin'21]

[Lin-Ren-Sun-Wang'22]

[Karthik-Khot'22]

[Chen-Feng-Laekhanukit-Liu'23]

[This work]

Constant Approximating k-Clique is W[1]-hard

Bingkai Lin Nanjing University, China lin@nju.edu.cn

On Lower Bounds of Approximating Parameterized k-Clique

Bingkai Lin *

Xuandi Ren[†]

Yican Sun[‡] Xiuhan Wang[§]

Almost Polynomial Factor Inapproximability for Parameterized k-Clique

Karthik C. S.*
Department of Computer Science
Rutgers University
karthik.cs@rutgers.edu

Subhash Khot†
Department of Computer Science
Courant Institute of Mathematical Sciences
New York University
khot@cims.nyu.edu

Simple Combinatorial Construction of the $k^{o(1)}$ -Lower Bound for Approximating the Parameterized k-Clique

Yijia Chen¹, Yi Feng², Bundit Laekhanukit², and Yanlin Liu³

 $^1{\rm Shanghai}$ Jiao Tong University $^2{\rm Shanghai}$ University of Finance and Economics $^3{\rm Ocean}$ University of China

Improved Hardness of Approximating *k*-Clique under ETH

Bingkai Lin * Xuandi

Xuandi Ren[†]

Yican Sun[‡]

Xiuhan Wang[§]

• $k' = 2^{k^6}$

• Gap = O(1)

• $k' = 2^{O(k)}$

• Gap = O(1)

 $\bullet \quad k' = 2^{O(k^2)}$

• $Gap = (k')^{o(1)}$

• $k' = q^k$

• $Gap = q = (k')^{o(1)}$

R runs in $f(k)|G|^{O(1)}$ time

Gap

• $k' = k^{O(\log \log k)}$

• Gap = O(1)

R runs in $f(k)|G|^{k^{0.54}}$ time

Overview of Previous Results

Work	Assumption	Lower Bound for Constant Approximation	Inapproximability Ratio in FPT time
[Lin'21]	W[1]≠FPT	no FPT	0(1)
	ETH	no $f(k) \cdot n^{o(\log^{1/6} k)}$	/
[Lin-Ren-Sun-Wang'22]	ETH	no $f(k) \cdot n^{o(\log k)}$	any $k^{o(1)}$
[Karthik-Khot'22]	W[1]≠FPT	no FPT	any $k^{o(1)}$
[Chen-Feng-Laekhanukit-Liu'23]	W[1]≠FPT	no FPT	any $k^{o(1)}$
[This work]	ETH	no $f(k) \cdot n^{k^{o(1/\log\log k)}}$	some $k^{1-o(1)}$

Improved Hardness of Approximating *k*-Clique under ETH •

Bingkai Lin*

Xuandi Ren[†]

Yican Sun[‡]

Xiuhan Wang[§]

• $k' = k^{O(\log \log k)}$ R runs in • Gap = O(1) $f(k)|G|^{k^{0.54}}$ time

 $u_n \in \Sigma$

Improved Hardness of Approximating *k*-Clique under ETH

Bingkai Lin * Xuandi Ren[†] Yican Sun[‡] Xiuhan Wang[§]

- $k' = k^{O(\log \log k)}$
- Gap = O(1)

R runs in $f(k)|G|^{k^{0.54}}$ time

*k-*Clique

Vector CSP

$$V_1, ..., V_k, S_{12}, ..., S_{k-1k} \subseteq \mathbb{F}^d$$

 $\exists v_1 \in V_1, ..., v_k \in V_k,$
 $\forall i, j \in [k], v_i + v_j \in S_{ij}.$

Gap-k'-Clique

Improved H	lardness of App	roximating k-	Clique u	ınder ETF
11110101001	ididiless of tipp	1 Chillienting it		midel Lii

Xiuhan Wang§ Bingkai Lin* Yican Sun[‡] Xuandi Ren[†]

 $H \quad \bullet \quad k' = k^{O(\log \log k)}$

• Gap = O(1)

R runs in $f(k)|G|^{k^{0.54}}$ time

k-Clique

Vector CSP

$$V_1, ..., V_k, S_{12}, ..., S_{k-1k} \subseteq \mathbb{F}^d$$

 $\exists v_1 \in V_1, ..., v_k \in V_k,$
 $\forall i, j \in [k], v_i + v_j \in S_{ij}.$

 $\exists i, j \in [k], v_i + v_i \notin S_{ii}$.

- Assume $V(G) = U_1 \cup \cdots \cup U_k \subseteq \mathbb{F}^m$
- Pick random matrices $A_1, ..., A_k \in \mathbb{F}^{d \times m}$
- $V_i = \{A_i u : u \in U_i\}$
- $S_{ij} = \{A_i u + A_j v : u \in U_i, v \in U_j, uv \in E(G)\}$

 $V_1, \dots, V_k, S_{12}, \dots, S_{k-1k} \subseteq \mathbb{F}^d$ $\forall v_1 \in V_1, \dots, v_k \in V_k,$

Theorem: when $d = O(\log n/\log |\mathbb{F}|)$, w.h.p.

- \forall different $u, u' \in U_i, A_i u \neq A_i u'$
- \forall different $(v, u), (v', u') \in U_i \times U_i$ $A_i v + A_j u \neq A_i v' + A_j u'$

Vector CSP with $\mathbf{d} = \mathbf{O}(\log n / \log |\mathbb{F}|)$ is W[1]hard, and has no $n^{o(k)}$ algorithms under ETH!

Improved Hardness of Approximating *k*-Clique under ETH

Bingkai Lin * Xuandi Ren[†] Yican Sun[‡] Xiuhan Wang[§]

- $k' = k^{O(\log \log k)}$
- Gap = O(1)

R runs in $f(k)|G|^{k^{0.54}}$ time

*k-*Clique

Vector CSP

$$\begin{aligned} &V_{1},...,V_{k},S_{12},...,S_{k-1k} \subseteq \mathbb{F}^{d} \\ &\exists v_{1} \in V_{1},...,v_{k} \in V_{k}, \\ &\forall i,j \in [k], v_{i} + v_{j} \in S_{ij} \; . \end{aligned}$$

Gap-k'-Clique

Improved Hardness of Approximating *k*-Clique under ETH

Yican Sun[‡] Xiuhan Wang[§] Bingkai Lin* Xuandi Ren[†]

- $k' = k^{O(\log \log k)}$
- Gap = O(1)

R runs in $f(k)|G|^{k^{0.54}}$ time

Theorem: Given a **Parallel Locally Testable** and Decodable Code

$$C: \mathbb{F}^k \to \Sigma^{k'}$$

There is a reduction from **Vector CSP** to **Gap**k'-Clique.

Vector CSP

$$V_1, ..., V_k, S_{12}, ..., S_{k-1k} \subseteq \mathbb{F}^d$$

 $\exists v_1 \in V_1, ..., v_k \in V_k,$
 $\forall i, j \in [k], v_i + v_j \in S_{ij}.$

$$V_1, ..., V_k, S_{12}, ..., S_{k-1k} \subseteq \mathbb{F}^d$$

 $\forall v_1 \in V_1, ..., v_k \in V_k,$
 $\exists i, j \in [k], v_i + v_j \notin S_{ij}.$

Gap-k'-Clique

Parallel Locally Testable and Decodable Code

Parallel Locally Testable and Decodable Code

From Vec-CSP to Gap-Clique using PLTDC

Vector CSP

Input: $V_1, ..., V_k, S_{12}, ..., S_{k-1k} \subseteq \mathbb{F}_1^d$, distinguish between

 $(\text{yes}) \, \exists v_1 \in V_1, \dots, v_k \in V_k, \\ \forall i, j \in [k], v_i + v_j \in S_{ij} \; .$

(no) $\forall v_1 \in V_1, \dots, v_k \in V_k,$ $\exists i, j \in [k], v_i + v_j \notin S_{ij}.$

PLTDC from Derivative Code

Recall PLTDC: a code mapping Σ_1^k to $\Sigma_2^{k\prime}$, satisfying

- Parallel local testability
- 2-Query parallel local decodability

Derivative Code [Woodruff-Yekhanin'07]: an extension of the **Reed-Muller Code**

Code	k'	Σ_2	
Hadamard Code	$(\Sigma_1)^k$	Σ_1	
Derivative Code with degree 3	$(\Sigma_1)^{\sqrt[3]{k}}$	$(\Sigma_1)^{\sqrt[3]{k}+1}$	
Derivative Code with degree $\Theta(\log k)$	$k^{\Theta(\log \log k)}$	$(\Sigma_1)^{k^{0.54}}$	

Conclusion and Open Problem

Contributions

• A framework to prove hardness of gap *k*-Clique

A PLTDC is all you need!

- Improved lower bound and inapproximability ratio under ETH
 - $f(k) \cdot n^{k^{\Omega(1/\log \log k)}}$ time lower bound for constant approximation
 - $k^{1-o(1)}$ inapproximability ratio in FPT time
- Tighter connection: $f(k) \cdot n^{\omega(\sqrt{k})}$ time lower bound for constant gap k-Clique \Rightarrow PIH

Open problem

• $f(k) \cdot n^{\omega(\sqrt{k})}$ time lower bound for constant gap k-Clique under ETH?

