Generalized Sorting with Predictions

Pinyan LuXuandi RenEnze SunYubo ZhangSUFEPKUSJTUPKU

January, 2021

Sorting \rightarrow Generalized Sorting

- one of the most basic computational tasks
- $\Theta(n \log n)$ comparisons are necessary and sufficient to sort n elements
- What if only a subset of comparisons is allowed?
- ⇒ generalized sorting problem (sorting with forbidden pairs), introduced in [HKK11]
 - only a subset of comparisons allowed
 - each of the same cost
 - $\tilde{O}(n^{1.5})$ comparisons are sufficient [HKK11]

Graph Model

• The problem can be viewed as a graph problem for convenience

```
Input: an undirected graph G = (V, E)
each v \in V represents an element,
each (u, v) \in E represents an allowed
comparison
```

Iteratively: probe $(u, v) \in E$, receive u < v or v < u

Output: a total order of all elements i.e. a sequence $v_1 < v_2 < \dots < v_n$ $v_i \in V$

- It is guaranteed:
 - There is a orientation $\vec{G} = (V, \vec{E})$ of *G* representing the underlying total order
 - \vec{G} is acyclic and there is a Hamiltonian path in \vec{G}
 - \vec{G} is fixed at the beginning
- The goal is to find out the underlying Hamiltonian path using the smallest number of queries!

Algorithm with Predictions

- Consistency: has near optimal performance when the predictions are good
- Robustness: is no worse than the prediction-less case when the predictions have large errors

The quality of predictions is measured by an amount *w* We want: the better the prediction, the better the performance

Generalized Sorting with Predictions

Predictions: $\vec{G}_P = (V, \vec{P}) =$ an orientation of GMeasurement: $w = |\vec{P} \setminus \vec{E}| =$ #mis-predicted edges

- Consistency: when w is very small, almost reaches the best possible
- Robustness: in the query model, combining an O(f(n)) algorithm A and an O(g(n)) algorithm B leads to an O(min(f(n), g(n))) algorithm C, thus robustness is trivially satisfied

An Example

 $N_b = \mathcal{N}_{in}(\vec{G}_P, b) = \{a, c, f\} \qquad T_b = \{a, c, f\} \qquad S_b = \{a\}$

- $N_u \triangleq \mathcal{N}_{in}(\vec{G}_P, u) = u$'s in-neighbors in the predicted graph
- $S_u \triangleq u$'s *real* in-neighbors among N_u
- $T_u \triangleq u$'s in-neighbors among N_u which are *not yet wrong*
 - either correct or unprobed

 $N_b = \mathcal{N}_{in}(\vec{G}_P, b) = \{a, c, f\} \qquad T_b = \{a, c, f\} \qquad S_b = \{a\}$

- $N_u \triangleq \mathcal{N}_{in}(\vec{G}_P, u) = u$'s in-neighbors in the predicted graph
- $S_u \triangleq u$'s *real* in-neighbors among N_u
- $T_u \triangleq u$'s in-neighbors among N_u which are *not yet wrong*
 - either correct or unprobed

 $N_{b} = \mathcal{N}_{in}(\vec{G}_{P}, b) = \{a, c, f\} \qquad T_{b} = \{a, f\} \qquad S_{b} = \{a\}$

- $N_u \triangleq \mathcal{N}_{in}(\vec{G}_P, u) = u$'s in-neighbors in the predicted graph
- $S_u \triangleq u$'s *real* in-neighbors among N_u
- $T_u \triangleq u$'s in-neighbors among N_u which are *not yet wrong*
 - either correct or unprobed

 $N_b = \mathcal{N}_{in}(\vec{G}_P, b) = \{a, c, f\} \qquad T_b = \{a\} \qquad S_b = \{a\}$

- $N_u \triangleq \mathcal{N}_{in}(\vec{G}_P, u) = u$'s in-neighbors in the predicted graph
- $S_u \triangleq u$'s *real* in-neighbors among N_u
- $T_u \triangleq u$'s in-neighbors among N_u which are *not yet wrong*
 - either correct or unprobed

Overall Idea

- $N_u \supseteq T_u \supseteq S_u$ all the time
 - $T_u = N_u$ initially
 - T_u shrinks to S_u finally
- We want to determine each S_u for all $u \in V$, using the smallest number of probes

Overall Idea

- We maintain a vertex set A s.t.
 - $\forall u \in A$, direction of edges between N_u and u are all known to us
- Initially $A = \emptyset$
- When A = V we succeed
- $A \approx$ currently sorted elements

Ideal Vertex

→ : edges that have been probed
--- → : edges in the prediction graph

When the total order of $T_u = \{a, c, d\}$ is known to us...

Conditions for u to be an ideal vertex (simplified):

- $T_u \subseteq A$
- The total order of T_u is known to us

find a mis-predicted edge (d, u), this probe is charged to the term w

Ideal Vertex → **Active Vertex**

There may be no ideal vertices at some time!

Conditions for u to be an ideal vertex (simplified):

weaken

•
$$T_u \subseteq A$$

• The total order of T_u is known to us

Conditions for u to be an active vertex (simplified):

- $S_u \subseteq A$
- The total order of S_u is known to us

An ideal vertex must be an active one since $S_u \subseteq T_u$. At any time there must be at least an active vertex.

Active Vertex

 S_u is <u>not known to us</u>...

Therefore whether a vertex is active is not known to us... However we can identify some vertices that are not active!

Conditions for u to be an active vertex (simplified):

- $S_u \subseteq A$
- The total order of S_u is known to us

Conditions for *u* to be an inactive vertex (simplified):

• $\exists v \in S_u \setminus A$

- $S_{\eta} \subseteq A$
- The total order of S_u is known to us

Conditions for *u* to be an inactive vertex (simplified):

- $\exists v \in S_u \setminus A$
- (or) $\exists v_1, v_2 \in S_u$ s.t. $(v_1 \not< v_2) \land (v_2 \not< v_1)$

Such a v or such a pair of (v_1, v_2) is called a certificate for u, which indicates that *u* is not active and is not the vertex we are looking for!

Re-searching for Certificates

- As the set A extends, the certificate for some vertex u may becomes invalid...
 - need to find a new certificate for *u*
 - in the worst case this may happen again and again, and we may make too many probes...
 - randomly pick certificates!
 - By carefully handling the correlation and analyzing the random process, we prove the number of probes needed is w.h.p. $O(n \log n + w)$.

Sketch

Open Questions

- Can this problem be solved in O(n + w) probes or even better?
- Can the prediction-less version of generalized sorting problem be solved in $O(n^{1.5-\epsilon})$ probes?

The End

• Thanks!