
Generalized Sorting with Predictions

January, 2021

Pinyan Lu
SUFE

Xuandi Ren
PKU

Enze Sun
SJTU

Yubo Zhang
PKU



Sorting → Generalized Sorting

• one of the most basic computational tasks

• Θ(𝑛 log 𝑛) comparisons are necessary and sufficient to sort 𝑛 elements

• What if only a subset of comparisons is allowed?
• ⇒ generalized sorting problem (sorting with forbidden pairs), introduced in 

[HKK11]
• only a subset of comparisons allowed
• each of the same cost
• !𝑂(𝑛!.#) comparisons are sufficient [HKK11]



Graph Model
• The problem can be viewed as a graph problem for convenience

• It is guaranteed:
• There is a orientation �⃗� = 𝑉, 𝐸 of 𝐺 representing the underlying total order
• �⃗� is acyclic and there is a Hamiltonian path in �⃗�
• �⃗� is fixed at the beginning

• The goal is to find out the underlying Hamiltonian path using the smallest number of queries!

Input: an undirected graph 𝐺 = (𝑉, 𝐸)
each 𝑣 ∈ 𝑉 represents an element,

each 𝑢, 𝑣 ∈ 𝐸 represents an allowed 
comparison

Iteratively:
probe 𝑢, 𝑣 ∈ 𝐸, 

receive 𝑢 < 𝑣 or 𝑣 < 𝑢
Output: a total order of all elements
i.e. a sequence 𝑣! < 𝑣" < ⋯ < 𝑣#

𝑣$ ∈ 𝑉



Algorithm with Predictions
• Consistency: has near optimal 

performance when the 
predictions are good
• Robustness: is no worse than the 

prediction-less case when the 
predictions have large errors

algorithminstance results

new
algorithm

instance
results

ML predictions

The quality of predictions is measured by an amount 𝑤
We want: the better the prediction, the better the performance



Generalized Sorting with Predictions
• Consistency: when 𝑤 is very 

small, almost reaches the best 
possible
• Robustness: in the query model, 

combining an 𝑂(𝑓(𝑛)) algorithm 
𝒜 and an 𝑂(𝑔(𝑛)) algorithm ℬ 
leads to an 𝑂(min(𝑓 𝑛 , 𝑔(𝑛))) 
algorithm 𝒞, thus robustness is 
trivially satisfied

-𝑂(𝑛!.&) probes 
[HKK11]

𝐺 = (𝑉, 𝐸) results

𝑂 𝑛 log 𝑛 + 𝑤  probes
[This paper, algorithm 1]

𝑂(𝑛𝑤) probes
[This paper, algorithm 2]

𝐺 = (𝑉, 𝐸)
results

ML �⃗�'

Predictions: �⃗�! = (𝑉, 𝑃) = an orientation of 𝐺
Measurement: 𝑤 = |𝑃\𝐸	| = #mis-predicted edges



An Example

b

a

f

d

e

c

b

a

f

d

e

c

b

a

f

d

e

c

b

a

f

d

e

c

𝐺 : the undirected graph (input) �⃗�' : the predicted digraph (input)

�⃗�: the correct digraph

: allowed comparisons
: the predicted directions
: correct directions
: edges in the Hamiltonian path
: mis-predicted edges

𝑤 = #mis-predicted edges = 4



Some Notations

• 𝑁! ≜ 𝒩"# �⃗�$, 𝑢 = 𝑢’s in-neighbors in the predicted graph
• 𝑆! ≜ 𝑢’s real in-neighbors among 𝑁!
• 𝑇! ≜ 𝑢’s in-neighbors among 𝑁! which are not yet wrong

• either correct or unprobed

b

a

f

d

e

c

𝑁( = 𝒩$# �⃗�' , 𝑏 = {𝑎, 𝑐, 𝑓}

b

a

f

d

e

c

𝑆( = {𝑎}

b

a

f

d

e

c

𝑇( = {𝑎, 𝑐, 𝑓}



Some Notations

• 𝑁! ≜ 𝒩"# �⃗�$, 𝑢 = 𝑢’s in-neighbors in the predicted graph
• 𝑆! ≜ 𝑢’s real in-neighbors among 𝑁!
• 𝑇! ≜ 𝑢’s in-neighbors among 𝑁! which are not yet wrong

• either correct or unprobed

b

a

f

d

e

c

𝑁( = 𝒩$# �⃗�' , 𝑏 = {𝑎, 𝑐, 𝑓}

b

a

f

d

e

c

𝑆( = {𝑎}

b

a

f

d

e

c

𝑇( = {𝑎, 𝑐, 𝑓}



Some Notations

• 𝑁! ≜ 𝒩"# �⃗�$, 𝑢 = 𝑢’s in-neighbors in the predicted graph
• 𝑆! ≜ 𝑢’s real in-neighbors among 𝑁!
• 𝑇! ≜ 𝑢’s in-neighbors among 𝑁! which are not yet wrong

• either correct or unprobed

b

a

f

d

e

c

𝑁( = 𝒩$# �⃗�' , 𝑏 = {𝑎, 𝑐, 𝑓}

b

a

f

d

e

c

𝑆( = {𝑎}

b

a

f

d

e

c

𝑇( = {𝑎, 𝑓}



Some Notations

• 𝑁! ≜ 𝒩"# �⃗�$, 𝑢 = 𝑢’s in-neighbors in the predicted graph
• 𝑆! ≜ 𝑢’s real in-neighbors among 𝑁!
• 𝑇! ≜ 𝑢’s in-neighbors among 𝑁! which are not yet wrong

• either correct or unprobed

b

a

f

d

e

c

𝑁( = 𝒩$# �⃗�' , 𝑏 = {𝑎, 𝑐, 𝑓}

b

a

f

d

e

c

𝑆( = {𝑎}

b

a

f

d

e

c

𝑇( = {𝑎}



Overall Idea

• 𝑁! ⊇ 𝑇! ⊇ 𝑆! all the time
• 𝑇$ = 𝑁$ initially
• 𝑇$ shrinks to 𝑆$ finally

• We want to determine each 𝑆! for all 𝑢 ∈ 𝑉, using the smallest number of 
probes

b

a

f

d

e

c

𝑁( = 𝒩$# �⃗�' , 𝑏 = {𝑎, 𝑐, 𝑓}

b

a

f

d

e

c

𝑆( = {𝑎}

b

a

f

d

e

c

𝑇( = {𝑎}



Overall Idea

• We maintain a vertex set 𝐴 s.t.
• ∀𝑢 ∈ 𝐴, direction of edges between 𝑁$ and 𝑢 are all known to us

• Initially 𝐴 = ∅
• When 𝐴 = 𝑉 we succeed
• 𝐴 ≈ currently sorted elements

b

a

f

d

e

c

�⃗�'

b

a

f

d

e

c

�⃗�

b

a

f

d

e

c

𝐴 = 𝑏, 𝑐
(an example)



Ideal Vertex

a
b c

d

u

: edges that have been probed
: edges in the prediction graph

a
b c

d

u

a
b c

d

u

𝒅 < 𝒆

𝒆 < 𝒅

can conclude 𝑎 < 𝑢 and 𝑐 < 𝑢 by transitivity

find a mis-predicted edge (𝑑, 𝑢), this probe is charged to the term 𝑤

When the total order of 𝑇) = {𝑎, 𝑐, 𝑑} is 
known to us…

Conditions for 𝑢 to be an ideal vertex (simplified):
• 𝑇) ⊆ 𝐴
• The total order of 𝑇) is known to us



Ideal Vertex → Active Vertex

b

a c

b

a c

�⃗�' �⃗�

b

a c

𝐴 = {𝑎, 𝑐}

There may be no ideal vertices at some time!

Conditions for 𝑢 to be an ideal vertex (simplified):
• 𝑇) ⊆ 𝐴
• The total order of 𝑇) is known to us

Conditions for 𝑢 to be an active vertex (simplified):
• 𝑆) ⊆ 𝐴
• The total order of 𝑆) is known to us

weaken

𝑏 is not ideal, 
but is active!

An ideal vertex must be an active one since 𝑆? ⊆ 𝑇?.
At any time there must be at least an active vertex. 



Active Vertex

b

a c

b

a c

�⃗�' �⃗�

b

a c

𝐴 = {𝑎, 𝑐}

𝑆? is not known to us…
Therefore whether a vertex is active is not known to us…

However we can identify some vertices that are not active!

Active, but how 
can we know that?



∃𝑐 ∈ 𝑆*\A
⇒ 𝑑 is not active

Inactive Vertex

d

a c

�⃗�'

b d

a c

�⃗�

bd

a c

𝐴 = {𝑎}

b

Conditions for 𝑢 to be an active vertex (simplified):
• 𝑆) ⊆ 𝐴
• The total order of 𝑆) is known to us

Conditions for 𝑢 to be an inactive vertex (simplified):
• ∃𝑣 ∈ 𝑆)\ 𝐴



∃𝑎, 𝑐 ∈ 𝑆* s.t. (𝑎 ≮ 𝑐) ∧ (𝑐 ≮ 𝑎)
⇒ 𝑑 is not active

Inactive Vertex

d

a c

�⃗�'

Conditions for 𝑢 to be an active vertex (simplified):
• 𝑆) ⊆ 𝐴
• The total order of 𝑆) is known to us

Conditions for 𝑢 to be an inactive vertex (simplified):
• ∃𝑣 ∈ 𝑆)\ 𝐴
• (or) ∃𝑣!, 𝑣" ∈ 𝑆) s.t. (𝑣! ≮ 𝑣") ∧ (𝑣" ≮ 𝑣!)

b d

a c

�⃗�

bd

a c

𝐴 = {𝑎, 𝑐}

b

Such a 𝒗 or such a pair of (𝒗𝟏, 𝒗𝟐) is called a certificate for 𝑢,
which indicates that 𝑢 is not active and is not the vertex we are looking for!

On looking for certificates for an active vertex (vertex 𝑏
for example), we will correct its mis-predicted in-edges!



Re-searching for Certificates

• As the set 𝐴 extends, the certificate for some vertex 𝑢 may becomes 
invalid…
• need to find a new certificate for 𝑢
• in the worst case this may happen again and again, and we may make too 

many probes…
• randomly pick certificates!

• By carefully handling the correlation and analyzing the random process, we 
prove the number of probes needed is w.h.p. 𝑂(𝑛 log 𝑛 + 𝑤).



Sketch

ideal 
vertices

active 
vertices

inactive 
vertices

may not exist due to the mis-predicted edges

must exist, but is invisible to us!

certificate: 
a proof for inactiveness

on looking for certificates for an active 
vertex 𝑢, its mis-predicted incoming 
edges can be found out, and it will 
finally fall into the ideal case

need to carefully handle the correlation 
and analyze the process

re-searching certificates again 
and again?
introduce randomness to help

𝑂(𝑛 log 𝑛 + 𝑤)
# mis-predicted edgesre-searching for certificates, w.h.p.



Open Questions

• Can this problem be solved in 𝑂(𝑛 + 𝑤) probes or even better?

• Can the prediction-less version of generalized sorting problem be 
solved in 𝑂(𝑛/.123) probes?



The End

• Thanks!


