

Parameterized Inapproximability Hypothesis under ETH

Venkatesan Guruswami

UC Berkeley

Bingkai Lin

Nanjing University

Xuandi Ren

UC Berkeley

Yican Sun

Peking University

Kewen Wu

UC Berkeley

$\mathsf{ETH} \Rightarrow \mathsf{PIH}$

- ETH (Exponential Time Hypothesis):
 - "3SAT requires $2^{\Omega(n)}$ time".
- PIH (Parameterized Inapproximability Hypothesis):
 - Hardness of approximating constraint satisfaction problems

Parameterized Complexity

How to cope with an NP-hard problem?

- Associate each instance *x* with a parameter $k \in \mathbb{N}$
 - $k \ll |x|$
 - Measure complexity over n = |x| and k
- **FPT** (Fixed-Parameter Tractable, Analogue of **P**):
 - Problems that admit $f(k) \cdot n^{O(1)}$ time algorithms for some computable function f

k-Vertex Cover

- Input:
 - G = (V, E) and parameter k
- Output:
 - $\exists v_1, \dots, v_k \in V$ covering all the edges?

has an $O(2^k \cdot n^{O(1)})$ enumeration algorithm

Efficient for small *k*!

Parameterized Complexity

How to cope with an NP-hard problem?

- Associate each instance *x* with a parameter $k \in \mathbb{N}$
 - $k \ll |x|$
 - Measure complexity over n = |x| and k
- W[1] (Analogue of NP): widely believed W[1] \neq FPT

k-Clique

- Input:
 - G = (V, E) and parameter k
- Output:
 - $\exists v_1, \dots, v_k \in V$ forming a clique?

Unlikely to have an $f(k) \cdot n^{O(1)}$ time algorithm No algorithm known with runtime $n^{O(k)}$

Parameterized Approximation

Can we find a g(k)-approximation in $f(k) \cdot n^{O(1)}$ time, for some computable functions f, g?

E.g., Can we find a $\frac{k}{2}$ -clique in a graph with a *k*-clique?

Parameterized Approximation

Can we find a g(k)-approximation in $f(k) \cdot n^{O(1)}$ time, for some computable functions f, g?

• **Optimal** ratio in FPT

• Beat polytime algorithms: $2.611 + \varepsilon$ for *k*-Median, $9 + \varepsilon$ for *k*-Means

Example [Cohen-Addad, Gupta, Kumar, Lee, Li'19]:

- $\left(1 + \frac{2}{e} + \varepsilon\right)$ -approximation algorithm for **k**-Median
- $\left(1 + \frac{8}{e} + \varepsilon\right)$ -approximation algorithm for **k**-Means

with runtime
$$\left(\frac{k \log k}{\varepsilon^2}\right)^k \cdot n^{O(1)}$$

Parameterized Hardness of Approximation

- **k**-SetCover
 - [Chen-Lin'18, Lin'19, Lin-Ren-Sun-Wang'23a] via threshold graph composition
 - [Karthik-Laekhanukit-Manurangsi'19] via distributed PCP framework
- **k**-Clique

٠

...

- [Lin'21, Karthik-Khot'22, Lin-Ren-Sun-Wang'23b] via locally decodable codes
- [Chen-Feng-Laekhanukit-Liu'23] via Sidon sets
- Max **k**-Coverage
 - [Manurangsi'20] via k-wise agreement testing

Ad-hoc reductions, tailored to the specific problems!

Parameterized Hardness of Approximation

Unified and powerful machinery for parameterized inapproximability?

Parameterized PCP-type theorem!

Recall: PCP Theorem

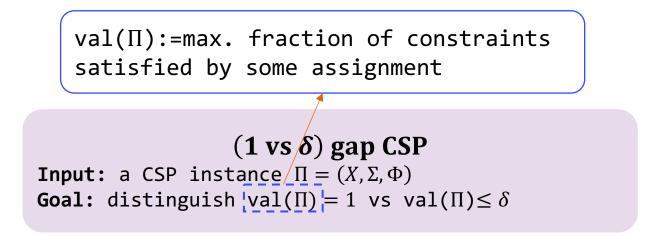
Constraint Satisfaction Problem

Input: $\Pi = (X, \Sigma, \Phi)$

- X: variables
- Σ: alphabet
- Φ: constraints

Output:

• $\exists \sigma: X \to \Sigma$ satisfying all constraints?



- PCP Theorem:
 - For any constant Σ and let n = |X|, there is no $n^{O(1)}$ time algorithm for (1 vs 0.9) gap CSP assuming P \neq NP.

Parameterized Inapproximability Hypothesis

Constraint Satisfaction Problem

Input: $\Pi = (X, \Sigma, \Phi)$

- X: variables
- Σ: alphabet
- Φ: constraints

Output:

- $\exists \sigma: X \to \Sigma$ satisfying all constraints?
- Parameterized CSP:
 - k = |X| and $n = |\Sigma|$, is there an $f(k) \cdot n^{O(1)}$ time algorithm?
 - Example: Multi-colored k-Clique

<u>PIH (Parameterized Inapproximability Hypothesis)</u> [Lokshtanov-Ramanujan-Saurabh-Zehavi'20]: Let k = |X| and $n = |\Sigma|$, there is no $f(k) \cdot n^{O(1)}$ time algorithm for (1 vs 0.9) gap parameterized CSP.

val(Π):=max. fraction of constraints satisfied by some assignment (1 vs δ) gap CSP Input: a CSP instance $\Pi = (X, \Sigma, \Phi)$ Goal: distinguish val(Π) = 1 vs val(Π) $\leq \delta$

Parameterized Inapproximability Hypothesis

- The analogue of PCP theorem here is $W[1] \neq FPT \Rightarrow PIH$
- It was known [Dinur-Manurangsi'18] that $Gap-ETH \Rightarrow PIH$
 - **Gap-ETH**: "Constant approximating Max3SAT requires $2^{\Omega(n)}$ time"
- **Open Question:** Can we prove **PIH** under some **gap-free** hypothesis?
- This work: $ETH \Rightarrow PIH$
 - **ETH**: "3SAT requires $2^{\Omega(n)}$ time"

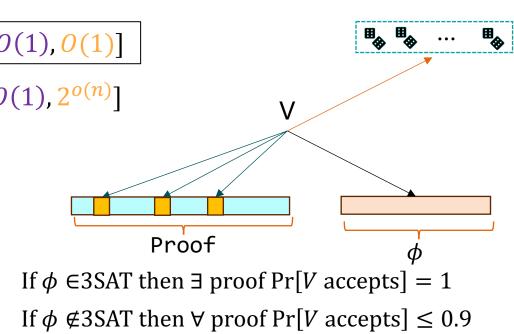
$\mathsf{ETH} \Rightarrow \mathsf{PIH}$

Goal: Reduce 3SAT to a (1 vs 0.9) parameterized CSP with

- $f(k) \ll n$ variables
- Alphabet size $\Sigma = 2^{o(n)}$

Classical PCP: $3SAT \in PCP[1, 0.9, 0(\log n), 0(1), 0(1)]$

- Equivalent to prove: $3SAT \in PCP[1,0.9, \log f(k), O(1), 2^{o(n)}]$
 - 1: completeness
 - 0.9: soundness
 - $\log f(k)$: randomness
 - O(1): query complexity
 - $2^{o(n)}$: proof alphabet



$\mathsf{ETH} \Rightarrow \mathsf{PIH}$

Goal: Reduce 3SAT to a (1 vs 0.9) parameterized CSP with

- $f(k) \ll n$ variables
- Alphabet size $\Sigma = 2^{o(n)}$
- In particular, we prove:

3SAT \in PCP [1,0.9, k^4 , O(1), $2^{O(\frac{n}{k})}$]

3SAT \in PCP [1, 0.9, k^4 , O(1), $2^{O(\frac{n}{k})}$]

Given a 3CNF ϕ , Typical PCP Proof:

Encoding of a 3CNF solution *x*

Auxiliary proof

Verify the proof:

- Test if the first part is a codeword
- Test the second part to see if x satisfies ϕ

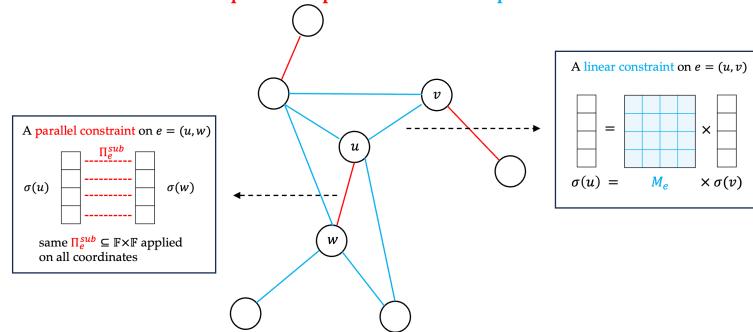
Hadamard encoding: randomness = poly(n)Reed-Muller encoding: randomness = O(log n)

Far beyond k^4

Vectorization

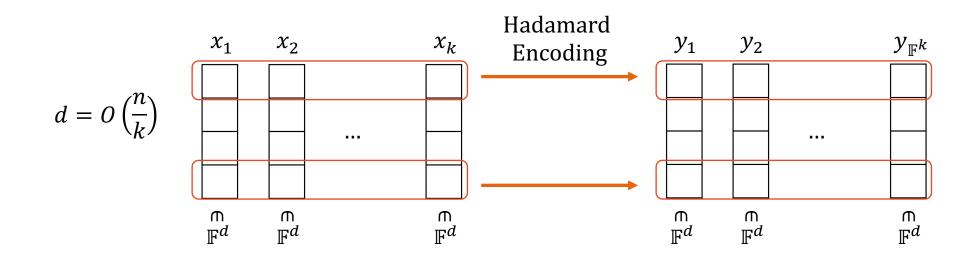
Reduce from 3SAT to Vector-valued CSP:

- |V| = O(k),
- $\Sigma = \mathbb{F}^d$ *d*-dimensional vectors over a finite field \mathbb{F}
 - $|\mathbb{F}| = O(1), \ d = O\left(\frac{n}{k}\right)$
- Constraint are divided into parallel part and linear part



Parallel Encoding

Given a vector-valued CSP with variables $\{x_1, ..., x_k\}$:



Admit parallel codeword testing and verification!

Randomness only depends on k!

Recent Improvement

Theorem: Assuming ETH, (1 vs. 1- ε) parameterized CSP requires $\Sigma^{k^{1-o(1)}}$ time.

- A more compact reduction from 3-Coloring, with only a linear blow-up in *k*
- Reed-Muller encoding of the solution
- Succinct PCPs [Ben-Sasson, Goldreich, Harsha, Sudan, Vadhan'06], used in a black-box way

Open Questions

- Prove **PIH** under **W[1]**≠**FPT**?
 - Barrier: Vector-valued CSP seems to lie in M[1], a subclass of W[1]
- More inapproximability results from **PIH**

Thanks for listening!