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Parameterized Complexity

▪ Associate each instance 𝑥 with a parameter 𝑘 ∈ ℕ

▪ 𝑘 ≪ |𝑥|

▪ Measure complexity over 𝑛 = 𝑥 and 𝑘

▪ FPT (Fixed-Parameter Tractable, Analogue of P):

▪ Problems that admit 𝑓(𝑘) ∙ 𝑛𝑂(1) time algorithms for some computable function 𝑓

has an 𝑂(2𝑘 ⋅ 𝑛𝑂(1)) enumeration algorithm

How to cope with an NP-hard problem?

Efficient for small 𝑘!

𝑘-Vertex Cover
• Input:

• 𝐺 = 𝑉, 𝐸 and parameter 𝑘
• Output:

• ∃𝑣1, … , 𝑣𝑘 ∈ 𝑉 covering all
the edges?

FPT∈



Parameterized Complexity

▪ Associate each instance 𝑥 with a parameter 𝑘 ∈ ℕ

▪ 𝑘 ≪ |𝑥|

▪ Measure complexity over 𝑛 = 𝑥 and 𝑘

▪ W[1] (Analogue of NP): widely believed W[1] ≠ FPT 

𝑘-Clique
• Input:

• 𝐺 = 𝑉, 𝐸 and parameter 𝑘
• Output:

• ∃𝑣1, … , 𝑣𝑘 ∈ 𝑉 forming a 
clique?

No algorithm known with runtime 𝑛𝑜(𝑘)

How to cope with an NP-hard problem?

W[1] -complete

Unlikely to have an 𝑓(𝑘) ∙ 𝑛𝑂(1) time algorithm



Parameterized Approximation

E.g. , Can we find a
𝑘

2
-clique in a graph with a 𝑘-clique?

Can we find a 𝒈(𝒌)-approximation in 𝒇 𝒌 ⋅ 𝒏𝑶 𝟏 time, for some 

computable functions 𝑓, 𝑔?



Example [Cohen-Addad, Gupta, Kumar, Lee, Li’19]:

• 1 +
2

𝑒
+ 𝜀 -approximation algorit hm for 𝒌-Median

• 1 +
8

𝑒
+ 𝜀 -approximation algorit hm for 𝒌-Means

wit h runtime 
𝑘 log 𝑘

𝜀 2

𝑘
⋅ 𝑛 𝑂 1

• Optimal ratio in FPT
• Beat polytime algorithms: 2.611 + 𝜀 for 𝒌-Median, 9 + 𝜀 for 𝒌-Means

Can we find a 𝒈(𝒌)-approximation in 𝒇 𝒌 ⋅ 𝒏𝑶 𝟏 time, for some 

computable functions 𝑓, 𝑔?

Parameterized Approximation



Parameterized Hardness of Approximation

▪ 𝒌-SetCover
▪ [Chen-Lin’18, Lin’19, Lin-Ren-Sun-Wang’23a] via threshold graph composition

▪ [Karthik-Laekhanukit-Manurangsi’19] via distributed PCP framework

▪ 𝒌-Clique
▪ [Lin’21, Karthik-Khot’22, Lin-Ren-Sun-Wang’23b] via locally decodable codes

▪ [Chen-Feng-Laekhanukit-Liu’23] via Sidon sets

▪ Max 𝒌-Coverage
▪ [Manurangsi’20] via 𝑘-wise agreement testing

▪ …

Ad-hoc reductions, 

tailored to the specific problems!



Parameterized PCP-type theorem!

Unified and powerful machinery for 
parameterized inapproximability?

Parameterized Hardness of Approximation



Recall: PCP Theorem

▪ PCP Theorem:

▪ For any constant Σ and let 𝑛 = |𝑋|, there is no 𝑛𝑂(1) time algorithm for (1 vs 0.9) gap CSP 
assuming P≠NP.

𝐂𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭 𝐒𝐚𝐭𝐢𝐬𝐟𝐚𝐜𝐭𝐢𝐨𝐧 𝐏𝐫𝐨𝐛𝐥𝐞𝐦
Input: Π = 𝑋, Σ, Φ
• 𝑋: variables
• Σ: alphabet
• Φ: constraints
Output:
• ∃𝜎: 𝑋 → Σ satisfying all constraints?

val(Π):=max. fraction of constraints
satisfied by some assignment

𝟏 𝐯𝐬 𝜹 𝐠𝐚𝐩 𝐂𝐒𝐏
Input: a CSP instance Π = 𝑋, Σ, Φ
Goal: distinguish val(Π) = 1 vs val(Π)≤ 𝛿 



Parameterized Inapproximability Hypothesis

▪ Parameterized CSP:

▪ 𝑘 = |𝑋| and 𝑛 = |Σ|, is there an 𝑓(𝑘) ∙ 𝑛𝑂(1) time algorithm?

▪ Example:  Multi-colored 𝒌-Clique

PIH (Parameterized Inapproximability Hypothesis) [Lokshtanov-Ramanujan-Saurabh-Zehavi’20]:
Let 𝑘 = |𝑋| and 𝑛 = |Σ|, there is no 𝑓(𝑘) ∙ 𝑛𝑂(1) time algorithm for (1 vs 0.9) gap parameterized CSP.

𝐂𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭 𝐒𝐚𝐭𝐢𝐬𝐟𝐚𝐜𝐭𝐢𝐨𝐧 𝐏𝐫𝐨𝐛𝐥𝐞𝐦
Input: Π = 𝑋, Σ, Φ
• 𝑋: variables
• Σ: alphabet
• Φ: constraints
Output:
• ∃𝜎: 𝑋 → Σ satisfying all constraints?

val(Π):=max. fraction of constraints
satisfied by some assignment

𝟏 𝐯𝐬 𝜹 𝐠𝐚𝐩 𝐂𝐒𝐏
Input: a CSP instance Π = 𝑋, Σ, Φ
Goal: distinguish val(Π) = 1 vs val(Π)≤ 𝛿 



Parameterized Inapproximability Hypothesis

▪ The analogue of PCP theorem here is W[1]≠FPT ⇒ PIH

▪ It was known [Dinur-Manurangsi’18] that Gap-ETH ⇒ PIH

▪ Gap-ETH: “Constant approximating Max3SAT requires 2Ω(𝑛) time”

▪ In a recent breakthrough [Guruswami-Lin-Ren-Sun-Wu’24], it was proven ETH ⇒ PIH

▪ ETH: “3SAT requires 2Ω(𝑛) time”



Outline

▪ Background
▪ Parameterized Complexity

▪ Constraint Satisfaction Problem (CSP)

▪ Parameterized Inapproximability Hypothesis (PIH)

▪ Our Result
▪ Baby PIH

▪ Proof Overview



List Satisfiability of CSP

2-CSP
• Input: Π = 𝑋, Σ, Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2Σ

list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2Σ

• A constraint on (𝑥, 𝑦) is list-satisfied iff ∃𝑢 ∈ 𝜎 𝑥 , 𝑣 ∈ 𝜎(𝑦), s.t. (𝑢, 𝑣) satisfies this constraint.
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2-CSP
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𝑥1

𝑥2

𝑥3

𝜎 𝑥2 + 𝜎 𝑥3 = 2

𝜎 𝑥1 + 𝜎 𝑥3 = 3

𝜎 𝑥1 = 𝜎(𝑥2)

Σ = {0,1,2,3}
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𝜎 𝑥 ≤ 𝑟 list-satisfying all constraints.



List Satisfiability of CSP

2-CSP
• Input: Π = 𝑋, Σ, Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2Σ

list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2Σ

• We say a 2-CSP is 𝑟-list satisfiable iff ∃𝜎 with max
𝑥∈𝑋

𝜎 𝑥 ≤ 𝑟 list-satisfying all constraints.

• CSP Value=1 ⇔ 1-list satisfiable ⇒ 𝑟-list satisfiable for 𝑟 ≥ 2
• 𝑟-list satisfiable ⇒ CSP Value ≥ 1/𝑟2
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• For any 𝑟 > 1, It’s NP-hard to distinguish between [1-list satisfiable] and [not even 𝑟-list satisfiable].



Baby PCP

2-CSP
• Input: Π = 𝑋, Σ, Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2Σ

list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2Σ

• We say a 2-CSP is 𝑟-list satisfiable iff ∃𝜎 with max
𝑥∈𝑋

𝜎 𝑥 ≤ 𝑟 list-satisfying all constraints.

• CSP Value=1 ⇔ 1-list satisfiable ⇒ 𝑟-list satisfiable for 𝑟 ≥ 2
• 𝑟-list satisfiable ⇒ CSP Value ≥ 1/𝑟2

• Baby PCP [Barto-Kozik’22]
• For any 𝑟 > 1, It’s NP-hard to distinguish between [1-list satisfiable] and [not even 𝑟-list satisfiable].

• ⇐ PCP
• For any 𝜀 > 0, It’s NP-hard to distinguish between [CSP Value =1] and [CSP Value <𝜀].

⇐ ⇐

(when 𝜀 < 1/𝑟2)



Baby PCP

• Baby PCP [Barto-Kozik’22]
• Assuming NP≠P, for any 𝑟 > 1, distinguishing between

[1-list satisfiable] and [not even 𝑟-list satisfiable] cannot be done in Π 𝑂(1) time.

• (A combinatorial proof)
• (Enough to prove the NP-hardness of some PCSPs (e.g., (2 + 𝜀)-SAT))
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• Assuming W[1]≠FPT, … cannot be done in 𝑓 𝑋 ⋅ Σ 𝑂(1) time.

• (An itself interesting inapproximability result for list-satisfiability of CSP)
• (A step towards PIH)
• (Enough to get some applications of PIH?)



Baby PIH

• Baby PCP [Barto-Kozik’22]
• Assuming NP≠P, for any 𝑟 > 1, distinguishing between

[1-list satisfiable] and [not even 𝑟-list satisfiable] cannot be done in Π 𝑂(1) time.

• (A combinatorial proof)
• (Enough to prove the NP-hardness of some PCSPs (e.g., (2 + 𝜀)-SAT))

• Baby PIH [This work]
• Assuming W[1]≠FPT, … cannot be done in 𝑓 𝑋 ⋅ Σ 𝑂(1) time.

• (An itself interesting inapproximability result for list-satisfiability of CSP)
• (A step towards PIH)
• (Enough to get some applications of PIH?)

• not sure…, but something stronger is enough!
• PIH ⇒ Average Baby PIH ⇒ Baby PIH
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Proof Overview

• Follows from and extends [Barto-Kozik’22]’s proof of Baby PCP Theorem
• Direct Product Construction

2-CSP
Π = 𝑋, Σ, Φ

𝑡-wise Direct Product 2-CSP

Π⊙𝑡 =
𝑋

𝑡
, Σ𝑡, Φ′

partial satisfying assignments
for the set of variables
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• (Want to show):
• For any 𝑟 > 1, there exists 𝑡 depending on 𝑟, such that for every Π,

• (Completeness) If Π is satisfiable, then so is Π⊙𝑡 .

• (Soundness) If Π is not satisfiable, then Π⊙𝑡 is not 𝑟-list satisfiable.



Proof Overview

• Follows from and extends [Barto-Kozik’22]’s proof of Baby PCP Theorem
• Direct Product Construction

2-CSP
Π = 𝑋, Σ, Φ

𝑡-wise Direct Product 2-CSP

Π⊙𝑡 =
𝑋

𝑡
, Σ𝑡, Φ′

• (Want to show):
• For any 𝑟 > 1, there exists 𝑡 depending on 𝑟, such that for every Π,

• (Completeness) If Π is satisfiable, then so is Π⊙𝑡 .

• (Soundness) If Π is not satisfiable, then Π⊙𝑡 is not 𝑟-list satisfiable.

• Reduction time: 𝑛𝑂𝑟(1) where 𝑛 = |Π|
• a unified proof for both Baby PCP and Baby PIH!

partial satisfying assignments
for the set of variables

consistency checks



Proof Overview

(𝑥1, 𝑥3, 𝑥4, 𝑥10) (𝑥1, 𝑥2, 𝑥5, 𝑥7)

(𝑥1, 𝑥2, 𝑥4, 𝑥9)and so on …

(1,1,3,2)

(2,2,3,3)

(1,1,3,1)

↦

(1,1,1,2)

(2,1,2,3)

(3,1,2,2)

↦

(1,3,1,2)

(3,3,2,1)

(2,2,3,1)

↦
A 3-list satisfying assignment for Π⊙4
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Proof Overview

• For some sufficiently large 𝑡 = 𝑡(𝑟),
• given an 𝑟-list satisfying multi-assignment 𝜎 of Π⊙𝑡 ,

• want to construct an (𝑟 − 1)-list satisfying multi-assignment 𝜎′ of Π⊙𝑡′
, for some 𝑡′ < 𝑡.
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• For some sufficiently large 𝑡 = 𝑡(𝑟),
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• want to construct an (𝑟 − 1)-list satisfying multi-assignment 𝜎′ of Π⊙𝑡′
, for some 𝑡′ < 𝑡.

• for each set 𝑆 ∈ 𝑋
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𝑡
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2-CSP
Π = 𝑋, Σ, Φ

𝑡-wise Direct Product 2-CSP

Π⊙𝑡 =
𝑋

𝑡
, Σ𝑡, Φ′



Proof Overview

(𝑥1, 𝑥3, 𝑥4, 𝑥10) (𝑥1, 𝑥2, 𝑥5, 𝑥7)

(𝑥1, 𝑥2, 𝑥4, 𝑥9)and so on …

(1,1,3,2)

(2,2,3,3)

(1,1,3,1)

↦

(1,1,1,2)

(2,1,2,3)

(3,1,2,2)

↦

(1,3,1,2)

(3,3,2,1)

(2,2,3,1)

↦
A 3-list satisfying assignment for Π⊙4



Proof Overview

(𝑥1, 𝑥3, 𝑥4, 𝑥10) (𝑥1, 𝑥2, 𝑥5, 𝑥7)

(𝑥1, 𝑥2, 𝑥4, 𝑥9)and so on …

(1,3,1,2)

(3,3,2,1)

(2,2,3,1)

↦
A 3-list satisfying assignment for Π⊙4

(𝑥1, 𝑥3, 𝑥4) (𝑥1, 𝑥2, 𝑥5)

(𝑥1, 𝑥2, 𝑥4)and so on …

(1,3,1)

(2,2,3)

↦

inherit



Proof Overview

(𝑥1, 𝑥3, 𝑥4, 𝑥10) (𝑥1, 𝑥2, 𝑥5, 𝑥7)

(𝑥1, 𝑥2, 𝑥4, 𝑥9)and so on …

(1,1,1,2)

(2,1,2,3)

(3,1,2,2)

↦

A 3-list satisfying assignment for Π⊙4

(𝑥1, 𝑥3, 𝑥4) (𝑥1, 𝑥2, 𝑥5)

(𝑥1, 𝑥2, 𝑥4)and so on …

(1,1,1)

(3,1,2)
↦

inherit



Proof Overview

(𝑥1, 𝑥3, 𝑥4, 𝑥10) (𝑥1, 𝑥2, 𝑥5, 𝑥7)

(𝑥1, 𝑥2, 𝑥4, 𝑥9)and so on …

(1,1,3,2)

(2,2,3,3)

(1,1,3,1)

↦

A 3-list satisfying assignment for Π⊙4

(𝑥1, 𝑥3, 𝑥4) (𝑥1, 𝑥2, 𝑥5)

(𝑥1, 𝑥2, 𝑥4)and so on …
(1,1,3)

(2,2,3)
↦

inherit



Proof Overview

(𝑥1, 𝑥3, 𝑥4) (𝑥1, 𝑥2, 𝑥5)

(𝑥1, 𝑥2, 𝑥4)and so on …
(1,1,3)

(2,2,3)
↦

(1,1,1)

(3,1,2)
↦

(1,3,1)

(2,2,3)

↦

A 2-list satisfying assignment for Π⊙3?



Proof Overview

▪ How can we discard one assignment safely?
▪ the one that is never used to meet any consistency constraints!



Proof Overview

▪ How can we discard one assignment safely?
▪ the one that is never used to meet any consistency constraints!

▪ Suppose we have the following bipartite direct product instance:

(𝑥1, 𝑥2, 𝑥3)
(1,2,1)

(3,3,2)

↦

(𝑥1, 𝑥2, 𝑥4)
(1,2,1)

(2,3,3)

↦

(𝑥1, 𝑥3, 𝑥4)
(1,1,1)

(3,3,2)

↦

(𝑥2, 𝑥3, 𝑥4)
(1,3,1)

(2,1,1)

↦

(𝑥1, 𝑥2, 𝑥3)

(𝑥1, 𝑥2, 𝑥4)

(𝑥1, 𝑥3, 𝑥4)

(𝑥2, 𝑥3, 𝑥4)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦



Proof Overview

▪ How can we discard one assignment safely?
▪ the one that is never used to meet any consistency constraints!

▪ Suppose we have the following bipartite direct product instance:

(𝑥1, 𝑥2, 𝑥3)
(1,2,1)

(3,3,2)

↦

(𝑥1, 𝑥2, 𝑥4)
(1,2,1)

(2,3,3)

↦

(𝑥1, 𝑥3, 𝑥4)
(1,1,1)

(3,3,2)

↦

(𝑥2, 𝑥3, 𝑥4)
(1,3,1)

(2,1,1)

↦

(𝑥1, 𝑥2, 𝑥3)

(𝑥1, 𝑥2, 𝑥4)

(𝑥1, 𝑥3, 𝑥4)

(𝑥2, 𝑥3, 𝑥4)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦

𝑥1 never
equals to 3



Proof Overview

▪ How can we discard one assignment safely?
▪ the one that is never used to meet any consistency constraints!

▪ Suppose we have the following bipartite direct product instance:

(𝑥1, 𝑥2, 𝑥3)
(1,2,1)

(3,3,2)

↦

(𝑥1, 𝑥2, 𝑥4)
(1,2,1)

(2,3,3)

↦

(𝑥1, 𝑥3, 𝑥4)
(1,1,1)

(3,3,2)

↦

(𝑥2, 𝑥3, 𝑥4)
(1,3,1)

(2,1,1)

↦

(𝑥1, 𝑥2, 𝑥3)

(𝑥1, 𝑥2, 𝑥4)

(𝑥1, 𝑥3, 𝑥4)

(𝑥2, 𝑥3, 𝑥4)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦

𝑥1 never
equals to 3

can safely
remove the
assignment
with 𝑥1 = 3



Proof Overview

▪ How can we discard one assignment safely?
▪ the one that is never used to meet any consistency constraints!

▪ Suppose we have the following bipartite direct product instance:

(𝑥1, 𝑥2, 𝑥3)
(1,2,1)

(3,3,2)

↦

(𝑥1, 𝑥2, 𝑥4)
(1,2,1)

(2,3,3)

↦

(𝑥1, 𝑥3, 𝑥4)
(1,1,1)

(3,3,2)

↦

(𝑥2, 𝑥3, 𝑥4)
(1,3,1)

(2,1,1)

↦

(𝑥1, 𝑥2, 𝑥3)

(𝑥1, 𝑥2, 𝑥4)

(𝑥1, 𝑥3, 𝑥4)

(𝑥2, 𝑥3, 𝑥4)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦

for each 𝑆, inherit
from such a 𝑇 that

3 ∉ 𝜎 𝑇 |𝑥1

for each 𝑆, inherit
from such a 𝑇 that

3 ∈ 𝜎 𝑇 |𝑥1



Proof Overview

▪ How can we discard one assignment safely?
▪ the one that is never used to meet any consistency constraints!

▪ Suppose we have the following bipartite direct product instance:

(𝑥1, 𝑥2, 𝑥3)
(1,2,1)

(3,3,2)

↦

(𝑥1, 𝑥2, 𝑥4)
(1,2,1)

(2,3,3)

↦

(𝑥1, 𝑥3, 𝑥4)
(1,1,1)

(3,3,2)

↦

(𝑥2, 𝑥3, 𝑥4)
(1,3,1)

(2,1,1)

↦

(𝑥1, 𝑥2, 𝑥3)

(𝑥1, 𝑥2, 𝑥4)

(𝑥1, 𝑥3, 𝑥4)

(𝑥2, 𝑥3, 𝑥4)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦

for each 𝑆, inherit
from such a 𝑇 that

3 ∉ 𝜎 𝑇 |𝑥1

for each 𝑆, inherit
from such a 𝑇 that

3 ∈ 𝜎 𝑇 |𝑥1

by discarding this
assignment, list size

is decreased by 1



Proof Overview

▪ Bipartite (𝑟, 1)-case

▪ Bipartite (𝑟, 𝑞)-case

▪ Non-bipartite 𝑟-case



Proof Overview

▪ Bipartite (𝑟, 1)-case

▪ Bipartite (𝑟, 𝑞)-case

▪ Non-bipartite 𝑟-case



Takeaway

▪ Parameterized Inapproximability Hypothesis – parameterized analog of PCP

▪ Baby PIH – inapproximability of the list-satisfiability of (parameterized) 2CSP

▪ W[1]-hard to distinguish between [1-list satisfiable] and [not even 𝑟-list satisfiable]

▪ Proof Idea: induction on the list size
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▪ W[1]-hard to distinguish between [1-list satisfiable] and [not even 𝑟-list satisfiable]

▪ Proof Idea: induction on the list size

▪ Average Baby PIH?
▪ ⇒ constant inapproximability of 𝑘-ExactCover



Takeaway

▪ Parameterized Inapproximability Hypothesis – parameterized analog of PCP

▪ Baby PIH – inapproximability of the list-satisfiability of (parameterized) 2CSP

▪ W[1]-hard to distinguish between [1-list satisfiable] and [not even 𝑟-list satisfiable]

▪ Proof Idea: induction on the list size

▪ Average Baby PIH?
▪ ⇒ constant inapproximability of 𝑘-ExactCover

▪ Thanks!
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