
Baby PIH:
Parameterized
Inapproximability of Min CSP

Venkatesan Guruswami

UC Berkeley

Xuandi Ren

UC Berkeley

Sai Sandeep

UC Berkeley

Outline

▪ Background
▪ Parameterized Complexity

▪ Constraint Satisfaction Problem (CSP)

▪ Parameterized Inapproximability Hypothesis (PIH)

▪ Our Result
▪ Baby PIH

▪ Proof Overview

Outline

▪ Background
▪ Parameterized Complexity

▪ Constraint Satisfaction Problem (CSP)

▪ Parameterized Inapproximability Hypothesis (PIH)

▪ Our Result
▪ Baby PIH

▪ Proof Overview

Parameterized Complexity

▪ Associate each instance 𝑥 with a parameter 𝑘 ∈ ℕ

▪ 𝑘 ≪ |𝑥|

▪ Measure complexity over 𝑛 = 𝑥 and 𝑘

▪ FPT (Fixed-Parameter Tractable, Analogue of P):

▪ Problems that admit 𝑓(𝑘) ∙ 𝑛𝑂(1) time algorithms for some computable function 𝑓

has an 𝑂(2𝑘 ⋅ 𝑛𝑂(1)) enumeration algorithm

How to cope with an NP-hard problem?

Efficient for small 𝑘!

𝑘-Vertex Cover
• Input:

• 𝐺 = 𝑉, 𝐸 and parameter 𝑘
• Output:

• ∃𝑣1, … , 𝑣𝑘 ∈ 𝑉 covering all
the edges?

FPT∈

Parameterized Complexity

▪ Associate each instance 𝑥 with a parameter 𝑘 ∈ ℕ

▪ 𝑘 ≪ |𝑥|

▪ Measure complexity over 𝑛 = 𝑥 and 𝑘

▪ W[1] (Analogue of NP): widely believed W[1] ≠ FPT

𝑘-Clique
• Input:

• 𝐺 = 𝑉, 𝐸 and parameter 𝑘
• Output:

• ∃𝑣1, … , 𝑣𝑘 ∈ 𝑉 forming a
clique?

No algorithm known with runtime 𝑛𝑜(𝑘)

How to cope with an NP-hard problem?

W[1] -complete

Unlikely to have an 𝑓(𝑘) ∙ 𝑛𝑂(1) time algorithm

Parameterized Approximation

E.g. , Can we find a
𝑘

2
-clique in a graph with a 𝑘-clique?

Can we find a 𝒈(𝒌)-approximation in 𝒇 𝒌 ⋅ 𝒏𝑶 𝟏 time, for some

computable functions 𝑓, 𝑔?

Example [Cohen-Addad, Gupta, Kumar, Lee, Li’19]:

• 1 +
2

𝑒
+ 𝜀 -approximation algorit hm for 𝒌-Median

• 1 +
8

𝑒
+ 𝜀 -approximation algorit hm for 𝒌-Means

wit h runtime
𝑘 log 𝑘

𝜀 2

𝑘
⋅ 𝑛 𝑂 1

• Optimal ratio in FPT
• Beat polytime algorithms: 2.611 + 𝜀 for 𝒌-Median, 9 + 𝜀 for 𝒌-Means

Can we find a 𝒈(𝒌)-approximation in 𝒇 𝒌 ⋅ 𝒏𝑶 𝟏 time, for some

computable functions 𝑓, 𝑔?

Parameterized Approximation

Parameterized Hardness of Approximation

▪ 𝒌-SetCover
▪ [Chen-Lin’18, Lin’19, Lin-Ren-Sun-Wang’23a] via threshold graph composition

▪ [Karthik-Laekhanukit-Manurangsi’19] via distributed PCP framework

▪ 𝒌-Clique
▪ [Lin’21, Karthik-Khot’22, Lin-Ren-Sun-Wang’23b] via locally decodable codes

▪ [Chen-Feng-Laekhanukit-Liu’23] via Sidon sets

▪ Max 𝒌-Coverage
▪ [Manurangsi’20] via 𝑘-wise agreement testing

▪ …

Ad-hoc reductions,

tailored to the specific problems!

Parameterized PCP-type theorem!

Unified and powerful machinery for
parameterized inapproximability?

Parameterized Hardness of Approximation

Recall: PCP Theorem

▪ PCP Theorem:

▪ For any constant Σ and let 𝑛 = |𝑋|, there is no 𝑛𝑂(1) time algorithm for (1 vs 0.9) gap CSP
assuming P≠NP.

𝐂𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭 𝐒𝐚𝐭𝐢𝐬𝐟𝐚𝐜𝐭𝐢𝐨𝐧 𝐏𝐫𝐨𝐛𝐥𝐞𝐦
Input: Π = 𝑋, Σ, Φ
• 𝑋: variables
• Σ: alphabet
• Φ: constraints
Output:
• ∃𝜎: 𝑋 → Σ satisfying all constraints?

val(Π):=max. fraction of constraints
satisfied by some assignment

𝟏 𝐯𝐬 𝜹 𝐠𝐚𝐩 𝐂𝐒𝐏
Input: a CSP instance Π = 𝑋, Σ, Φ
Goal: distinguish val(Π) = 1 vs val(Π)≤ 𝛿

Parameterized Inapproximability Hypothesis

▪ Parameterized CSP:

▪ 𝑘 = |𝑋| and 𝑛 = |Σ|, is there an 𝑓(𝑘) ∙ 𝑛𝑂(1) time algorithm?

▪ Example: Multi-colored 𝒌-Clique

PIH (Parameterized Inapproximability Hypothesis) [Lokshtanov-Ramanujan-Saurabh-Zehavi’20]:
Let 𝑘 = |𝑋| and 𝑛 = |Σ|, there is no 𝑓(𝑘) ∙ 𝑛𝑂(1) time algorithm for (1 vs 0.9) gap parameterized CSP.

𝐂𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭 𝐒𝐚𝐭𝐢𝐬𝐟𝐚𝐜𝐭𝐢𝐨𝐧 𝐏𝐫𝐨𝐛𝐥𝐞𝐦
Input: Π = 𝑋, Σ, Φ
• 𝑋: variables
• Σ: alphabet
• Φ: constraints
Output:
• ∃𝜎: 𝑋 → Σ satisfying all constraints?

val(Π):=max. fraction of constraints
satisfied by some assignment

𝟏 𝐯𝐬 𝜹 𝐠𝐚𝐩 𝐂𝐒𝐏
Input: a CSP instance Π = 𝑋, Σ, Φ
Goal: distinguish val(Π) = 1 vs val(Π)≤ 𝛿

Parameterized Inapproximability Hypothesis

▪ The analogue of PCP theorem here is W[1]≠FPT ⇒ PIH

▪ It was known [Dinur-Manurangsi’18] that Gap-ETH ⇒ PIH

▪ Gap-ETH: “Constant approximating Max3SAT requires 2Ω(𝑛) time”

▪ In a recent breakthrough [Guruswami-Lin-Ren-Sun-Wu’24], it was proven ETH ⇒ PIH

▪ ETH: “3SAT requires 2Ω(𝑛) time”

Outline

▪ Background
▪ Parameterized Complexity

▪ Constraint Satisfaction Problem (CSP)

▪ Parameterized Inapproximability Hypothesis (PIH)

▪ Our Result
▪ Baby PIH

▪ Proof Overview

List Satisfiability of CSP

2-CSP
• Input: Π = 𝑋, Σ, Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2Σ

list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2Σ

• A constraint on (𝑥, 𝑦) is list-satisfied iff ∃𝑢 ∈ 𝜎 𝑥 , 𝑣 ∈ 𝜎(𝑦), s.t. (𝑢, 𝑣) satisfies this constraint.

List Satisfiability of CSP

2-CSP
• Input: Π = 𝑋, Σ, Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2Σ

list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2Σ

• A constraint on (𝑥, 𝑦) is list-satisfied iff ∃𝑢 ∈ 𝜎 𝑥 , 𝑣 ∈ 𝜎(𝑦), s.t. (𝑢, 𝑣) satisfies this constraint.

𝑥1

𝑥2

𝑥3

𝜎 𝑥2 + 𝜎 𝑥3 = 2

𝜎 𝑥1 + 𝜎 𝑥3 = 3

𝜎 𝑥1 = 𝜎(𝑥2)

Σ = {0,1,2,3}

List Satisfiability of CSP

𝑥1

𝑥2

𝑥3

𝜎 𝑥2 + 𝜎 𝑥3 = 2

𝜎 𝑥1 + 𝜎 𝑥3 = 3

𝜎 𝑥1 = 𝜎(𝑥2)

Σ = {0,1,2,3} [1]

[1,2][1]

2-CSP
• Input: Π = 𝑋, Σ, Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2Σ

list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2Σ

• A constraint on (𝑥, 𝑦) is list-satisfied iff ∃𝑢 ∈ 𝜎 𝑥 , 𝑣 ∈ 𝜎(𝑦), s.t. (𝑢, 𝑣) satisfies this constraint.

List Satisfiability of CSP

𝑥1

𝑥2

𝑥3

𝜎 𝑥2 + 𝜎 𝑥3 = 2

𝜎 𝑥1 + 𝜎 𝑥3 = 3

𝜎 𝑥1 = 𝜎(𝑥2)

Σ = {0,1,2,3} [1]

[1,2][1]

2-CSP
• Input: Π = 𝑋, Σ, Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2Σ

list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2Σ

• A constraint on (𝑥, 𝑦) is list-satisfied iff ∃𝑢 ∈ 𝜎 𝑥 , 𝑣 ∈ 𝜎(𝑦), s.t. (𝑢, 𝑣) satisfies this constraint.

[1]

List Satisfiability of CSP

𝑥1

𝑥2

𝑥3

𝜎 𝑥2 + 𝜎 𝑥3 = 2

𝜎 𝑥1 + 𝜎 𝑥3 = 3

𝜎 𝑥1 = 𝜎(𝑥2)

Σ = {0,1,2,3}

[1,2][1]

2-CSP
• Input: Π = 𝑋, Σ, Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2Σ

list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2Σ

• A constraint on (𝑥, 𝑦) is list-satisfied iff ∃𝑢 ∈ 𝜎 𝑥 , 𝑣 ∈ 𝜎(𝑦), s.t. (𝑢, 𝑣) satisfies this constraint.

List Satisfiability of CSP

𝑥1

𝑥2

𝑥3

𝜎 𝑥2 + 𝜎 𝑥3 = 2

𝜎 𝑥1 + 𝜎 𝑥3 = 3

𝜎 𝑥1 = 𝜎(𝑥2)

Σ = {0,1,2,3} [1]

[1,2][1]

2-CSP
• Input: Π = 𝑋, Σ, Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2Σ

list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2Σ

• A constraint on (𝑥, 𝑦) is list-satisfied iff ∃𝑢 ∈ 𝜎 𝑥 , 𝑣 ∈ 𝜎(𝑦), s.t. (𝑢, 𝑣) satisfies this constraint.

List Satisfiability of CSP

2-CSP
• Input: Π = 𝑋, Σ, Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2Σ

list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2Σ

• We say a 2-CSP is 𝑟-list satisfiable iff ∃𝜎 with max
𝑥∈𝑋

𝜎 𝑥 ≤ 𝑟 list-satisfying all constraints.

List Satisfiability of CSP

2-CSP
• Input: Π = 𝑋, Σ, Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2Σ

list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2Σ

• We say a 2-CSP is 𝑟-list satisfiable iff ∃𝜎 with max
𝑥∈𝑋

𝜎 𝑥 ≤ 𝑟 list-satisfying all constraints.

• CSP Value=1 ⇔ 1-list satisfiable ⇒ 𝑟-list satisfiable for 𝑟 ≥ 2
• 𝑟-list satisfiable ⇒ CSP Value ≥ 1/𝑟2

Baby PCP

2-CSP
• Input: Π = 𝑋, Σ, Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2Σ

list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2Σ

• We say a 2-CSP is 𝑟-list satisfiable iff ∃𝜎 with max
𝑥∈𝑋

𝜎 𝑥 ≤ 𝑟 list-satisfying all constraints.

• CSP Value=1 ⇔ 1-list satisfiable ⇒ 𝑟-list satisfiable for 𝑟 ≥ 2
• 𝑟-list satisfiable ⇒ CSP Value ≥ 1/𝑟2

• Baby PCP [Barto-Kozik’22]
• For any 𝑟 > 1, It’s NP-hard to distinguish between [1-list satisfiable] and [not even 𝑟-list satisfiable].

Baby PCP

2-CSP
• Input: Π = 𝑋, Σ, Φ
• Output:

• ∃ multi-assignment 𝜎: 𝑋 → 2Σ

list-satisfying all constraints?

List Value
max. list size of a list-satisfying

multi-assignment 𝜎: 𝑋 → 2Σ

• We say a 2-CSP is 𝑟-list satisfiable iff ∃𝜎 with max
𝑥∈𝑋

𝜎 𝑥 ≤ 𝑟 list-satisfying all constraints.

• CSP Value=1 ⇔ 1-list satisfiable ⇒ 𝑟-list satisfiable for 𝑟 ≥ 2
• 𝑟-list satisfiable ⇒ CSP Value ≥ 1/𝑟2

• Baby PCP [Barto-Kozik’22]
• For any 𝑟 > 1, It’s NP-hard to distinguish between [1-list satisfiable] and [not even 𝑟-list satisfiable].

• ⇐ PCP
• For any 𝜀 > 0, It’s NP-hard to distinguish between [CSP Value =1] and [CSP Value <𝜀].

⇐ ⇐

(when 𝜀 < 1/𝑟2)

Baby PCP

• Baby PCP [Barto-Kozik’22]
• Assuming NP≠P, for any 𝑟 > 1, distinguishing between

[1-list satisfiable] and [not even 𝑟-list satisfiable] cannot be done in Π 𝑂(1) time.

• (A combinatorial proof)
• (Enough to prove the NP-hardness of some PCSPs (e.g., (2 + 𝜀)-SAT))

Baby PIH

• Baby PCP [Barto-Kozik’22]
• Assuming NP≠P, for any 𝑟 > 1, distinguishing between

[1-list satisfiable] and [not even 𝑟-list satisfiable] cannot be done in Π 𝑂(1) time.

• (A combinatorial proof)
• (Enough to prove the NP-hardness of some PCSPs (e.g., (2 + 𝜀)-SAT))

• Baby PIH [This work]
• Assuming W[1]≠FPT, … cannot be done in 𝑓 𝑋 ⋅ Σ 𝑂(1) time.

• (An itself interesting inapproximability result for list-satisfiability of CSP)
• (A step towards PIH)
• (Enough to get some applications of PIH?)

Baby PIH

• Baby PCP [Barto-Kozik’22]
• Assuming NP≠P, for any 𝑟 > 1, distinguishing between

[1-list satisfiable] and [not even 𝑟-list satisfiable] cannot be done in Π 𝑂(1) time.

• (A combinatorial proof)
• (Enough to prove the NP-hardness of some PCSPs (e.g., (2 + 𝜀)-SAT))

• Baby PIH [This work]
• Assuming W[1]≠FPT, … cannot be done in 𝑓 𝑋 ⋅ Σ 𝑂(1) time.

• (An itself interesting inapproximability result for list-satisfiability of CSP)
• (A step towards PIH)
• (Enough to get some applications of PIH?)

• not sure…, but something stronger is enough!
• PIH ⇒ Average Baby PIH ⇒ Baby PIH

Outline

▪ Background
▪ Parameterized Complexity

▪ Constraint Satisfaction Problem (CSP)

▪ Parameterized Inapproximability Hypothesis (PIH)

▪ Our Result
▪ Baby PIH

▪ Proof Overview

Proof Overview

• Follows from and extends [Barto-Kozik’22]’s proof of Baby PCP Theorem
• Direct Product Construction

2-CSP
Π = 𝑋, Σ, Φ

𝑡-wise Direct Product 2-CSP

Π⊙𝑡 =
𝑋

𝑡
, Σ𝑡, Φ′

partial satisfying assignments
for the set of variables

Proof Overview

• Follows from and extends [Barto-Kozik’22]’s proof of Baby PCP Theorem
• Direct Product Construction

2-CSP
Π = 𝑋, Σ, Φ

𝑡-wise Direct Product 2-CSP

Π⊙𝑡 =
𝑋

𝑡
, Σ𝑡, Φ′

consistency checks

Proof Overview

• Follows from and extends [Barto-Kozik’22]’s proof of Baby PCP Theorem
• Direct Product Construction

2-CSP
Π = 𝑋, Σ, Φ

𝑡-wise Direct Product 2-CSP

Π⊙𝑡 =
𝑋

𝑡
, Σ𝑡, Φ′

partial satisfying assignments
for the set of variables

consistency checks

• (Want to show):
• For any 𝑟 > 1, there exists 𝑡 depending on 𝑟, such that for every Π,

• (Completeness) If Π is satisfiable, then so is Π⊙𝑡 .

• (Soundness) If Π is not satisfiable, then Π⊙𝑡 is not 𝑟-list satisfiable.

Proof Overview

• Follows from and extends [Barto-Kozik’22]’s proof of Baby PCP Theorem
• Direct Product Construction

2-CSP
Π = 𝑋, Σ, Φ

𝑡-wise Direct Product 2-CSP

Π⊙𝑡 =
𝑋

𝑡
, Σ𝑡, Φ′

• (Want to show):
• For any 𝑟 > 1, there exists 𝑡 depending on 𝑟, such that for every Π,

• (Completeness) If Π is satisfiable, then so is Π⊙𝑡 .

• (Soundness) If Π is not satisfiable, then Π⊙𝑡 is not 𝑟-list satisfiable.

• Reduction time: 𝑛𝑂𝑟(1) where 𝑛 = |Π|
• a unified proof for both Baby PCP and Baby PIH!

partial satisfying assignments
for the set of variables

consistency checks

Proof Overview

(𝑥1, 𝑥3, 𝑥4, 𝑥10) (𝑥1, 𝑥2, 𝑥5, 𝑥7)

(𝑥1, 𝑥2, 𝑥4, 𝑥9)and so on …

(1,1,3,2)

(2,2,3,3)

(1,1,3,1)

↦

(1,1,1,2)

(2,1,2,3)

(3,1,2,2)

↦

(1,3,1,2)

(3,3,2,1)

(2,2,3,1)

↦
A 3-list satisfying assignment for Π⊙4

Proof Overview

(𝑥1, 𝑥3, 𝑥4, 𝑥10) (𝑥1, 𝑥2, 𝑥5, 𝑥7)

(𝑥1, 𝑥2, 𝑥4, 𝑥9)and so on …

(1,1,3,2)

(2,2,3,3)

(1,1,3,1)

↦

(1,1,1,2)

(2,1,2,3)

(3,1,2,2)

↦

(1,3,1,2)

(3,3,2,1)

(2,2,3,1)

↦
A 3-list satisfying assignment for Π⊙4

Proof Overview

(𝑥1, 𝑥3, 𝑥4, 𝑥10) (𝑥1, 𝑥2, 𝑥5, 𝑥7)

(𝑥1, 𝑥2, 𝑥4, 𝑥9)and so on …

(1,1,3,2)

(2,2,3,3)

(1,1,3,1)

↦

(1,1,1,2)

(2,1,2,3)

(3,1,2,2)

↦

(1,3,1,2)

(3,3,2,1)

(2,2,3,1)

↦
A 3-list satisfying assignment for Π⊙4

Proof Overview

(𝑥1, 𝑥3, 𝑥4, 𝑥10) (𝑥1, 𝑥2, 𝑥5, 𝑥7)

(𝑥1, 𝑥2, 𝑥4, 𝑥9)and so on …

(1,1,3,2)

(2,2,3,3)

(1,1,3,1)

↦

(1,1,1,2)

(2,1,2,3)

(3,1,2,2)

↦

(1,3,1,2)

(3,3,2,1)

(2,2,3,1)

↦
A 3-list satisfying assignment for Π⊙4

Proof Overview

• For some sufficiently large 𝑡 = 𝑡(𝑟),
• given an 𝑟-list satisfying multi-assignment 𝜎 of Π⊙𝑡 ,

• want to construct an (𝑟 − 1)-list satisfying multi-assignment 𝜎′ of Π⊙𝑡′
, for some 𝑡′ < 𝑡.

2-CSP
Π = 𝑋, Σ, Φ

𝑡-wise Direct Product 2-CSP

Π⊙𝑡 =
𝑋

𝑡
, Σ𝑡, Φ′

Proof Overview

• For some sufficiently large 𝑡 = 𝑡(𝑟),
• given an 𝑟-list satisfying multi-assignment 𝜎 of Π⊙𝑡 ,

• want to construct an (𝑟 − 1)-list satisfying multi-assignment 𝜎′ of Π⊙𝑡′
, for some 𝑡′ < 𝑡.

• If we end up with the 1-list satisfiability of Π⊙(≥2), then we are done!

2-CSP
Π = 𝑋, Σ, Φ

𝑡-wise Direct Product 2-CSP

Π⊙𝑡 =
𝑋

𝑡
, Σ𝑡, Φ′

Proof Overview

• For some sufficiently large 𝑡 = 𝑡(𝑟),
• given an 𝑟-list satisfying multi-assignment 𝜎 of Π⊙𝑡 ,

• want to construct an (𝑟 − 1)-list satisfying multi-assignment 𝜎′ of Π⊙𝑡′
, for some 𝑡′ < 𝑡.

• for each set 𝑆 ∈ 𝑋
𝑡′

, choose a set 𝑇 ∈ 𝑋
𝑡

with 𝑆 ⊆ 𝑇

• the list 𝜎′(𝑆) is inherited from the list 𝜎(𝑇) (at the hope of decreasing the list size by 1)

• If we end up with the 1-list satisfiability of Π⊙(≥2), then we are done!

2-CSP
Π = 𝑋, Σ, Φ

𝑡-wise Direct Product 2-CSP

Π⊙𝑡 =
𝑋

𝑡
, Σ𝑡, Φ′

Proof Overview

(𝑥1, 𝑥3, 𝑥4, 𝑥10) (𝑥1, 𝑥2, 𝑥5, 𝑥7)

(𝑥1, 𝑥2, 𝑥4, 𝑥9)and so on …

(1,1,3,2)

(2,2,3,3)

(1,1,3,1)

↦

(1,1,1,2)

(2,1,2,3)

(3,1,2,2)

↦

(1,3,1,2)

(3,3,2,1)

(2,2,3,1)

↦
A 3-list satisfying assignment for Π⊙4

Proof Overview

(𝑥1, 𝑥3, 𝑥4, 𝑥10) (𝑥1, 𝑥2, 𝑥5, 𝑥7)

(𝑥1, 𝑥2, 𝑥4, 𝑥9)and so on …

(1,3,1,2)

(3,3,2,1)

(2,2,3,1)

↦
A 3-list satisfying assignment for Π⊙4

(𝑥1, 𝑥3, 𝑥4) (𝑥1, 𝑥2, 𝑥5)

(𝑥1, 𝑥2, 𝑥4)and so on …

(1,3,1)

(2,2,3)

↦

inherit

Proof Overview

(𝑥1, 𝑥3, 𝑥4, 𝑥10) (𝑥1, 𝑥2, 𝑥5, 𝑥7)

(𝑥1, 𝑥2, 𝑥4, 𝑥9)and so on …

(1,1,1,2)

(2,1,2,3)

(3,1,2,2)

↦

A 3-list satisfying assignment for Π⊙4

(𝑥1, 𝑥3, 𝑥4) (𝑥1, 𝑥2, 𝑥5)

(𝑥1, 𝑥2, 𝑥4)and so on …

(1,1,1)

(3,1,2)
↦

inherit

Proof Overview

(𝑥1, 𝑥3, 𝑥4, 𝑥10) (𝑥1, 𝑥2, 𝑥5, 𝑥7)

(𝑥1, 𝑥2, 𝑥4, 𝑥9)and so on …

(1,1,3,2)

(2,2,3,3)

(1,1,3,1)

↦

A 3-list satisfying assignment for Π⊙4

(𝑥1, 𝑥3, 𝑥4) (𝑥1, 𝑥2, 𝑥5)

(𝑥1, 𝑥2, 𝑥4)and so on …
(1,1,3)

(2,2,3)
↦

inherit

Proof Overview

(𝑥1, 𝑥3, 𝑥4) (𝑥1, 𝑥2, 𝑥5)

(𝑥1, 𝑥2, 𝑥4)and so on …
(1,1,3)

(2,2,3)
↦

(1,1,1)

(3,1,2)
↦

(1,3,1)

(2,2,3)

↦

A 2-list satisfying assignment for Π⊙3?

Proof Overview

▪ How can we discard one assignment safely?
▪ the one that is never used to meet any consistency constraints!

Proof Overview

▪ How can we discard one assignment safely?
▪ the one that is never used to meet any consistency constraints!

▪ Suppose we have the following bipartite direct product instance:

(𝑥1, 𝑥2, 𝑥3)
(1,2,1)

(3,3,2)

↦

(𝑥1, 𝑥2, 𝑥4)
(1,2,1)

(2,3,3)

↦

(𝑥1, 𝑥3, 𝑥4)
(1,1,1)

(3,3,2)

↦

(𝑥2, 𝑥3, 𝑥4)
(1,3,1)

(2,1,1)

↦

(𝑥1, 𝑥2, 𝑥3)

(𝑥1, 𝑥2, 𝑥4)

(𝑥1, 𝑥3, 𝑥4)

(𝑥2, 𝑥3, 𝑥4)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦

Proof Overview

▪ How can we discard one assignment safely?
▪ the one that is never used to meet any consistency constraints!

▪ Suppose we have the following bipartite direct product instance:

(𝑥1, 𝑥2, 𝑥3)
(1,2,1)

(3,3,2)

↦

(𝑥1, 𝑥2, 𝑥4)
(1,2,1)

(2,3,3)

↦

(𝑥1, 𝑥3, 𝑥4)
(1,1,1)

(3,3,2)

↦

(𝑥2, 𝑥3, 𝑥4)
(1,3,1)

(2,1,1)

↦

(𝑥1, 𝑥2, 𝑥3)

(𝑥1, 𝑥2, 𝑥4)

(𝑥1, 𝑥3, 𝑥4)

(𝑥2, 𝑥3, 𝑥4)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦

𝑥1 never
equals to 3

Proof Overview

▪ How can we discard one assignment safely?
▪ the one that is never used to meet any consistency constraints!

▪ Suppose we have the following bipartite direct product instance:

(𝑥1, 𝑥2, 𝑥3)
(1,2,1)

(3,3,2)

↦

(𝑥1, 𝑥2, 𝑥4)
(1,2,1)

(2,3,3)

↦

(𝑥1, 𝑥3, 𝑥4)
(1,1,1)

(3,3,2)

↦

(𝑥2, 𝑥3, 𝑥4)
(1,3,1)

(2,1,1)

↦

(𝑥1, 𝑥2, 𝑥3)

(𝑥1, 𝑥2, 𝑥4)

(𝑥1, 𝑥3, 𝑥4)

(𝑥2, 𝑥3, 𝑥4)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦

𝑥1 never
equals to 3

can safely
remove the
assignment
with 𝑥1 = 3

Proof Overview

▪ How can we discard one assignment safely?
▪ the one that is never used to meet any consistency constraints!

▪ Suppose we have the following bipartite direct product instance:

(𝑥1, 𝑥2, 𝑥3)
(1,2,1)

(3,3,2)

↦

(𝑥1, 𝑥2, 𝑥4)
(1,2,1)

(2,3,3)

↦

(𝑥1, 𝑥3, 𝑥4)
(1,1,1)

(3,3,2)

↦

(𝑥2, 𝑥3, 𝑥4)
(1,3,1)

(2,1,1)

↦

(𝑥1, 𝑥2, 𝑥3)

(𝑥1, 𝑥2, 𝑥4)

(𝑥1, 𝑥3, 𝑥4)

(𝑥2, 𝑥3, 𝑥4)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦

for each 𝑆, inherit
from such a 𝑇 that

3 ∉ 𝜎 𝑇 |𝑥1

for each 𝑆, inherit
from such a 𝑇 that

3 ∈ 𝜎 𝑇 |𝑥1

Proof Overview

▪ How can we discard one assignment safely?
▪ the one that is never used to meet any consistency constraints!

▪ Suppose we have the following bipartite direct product instance:

(𝑥1, 𝑥2, 𝑥3)
(1,2,1)

(3,3,2)

↦

(𝑥1, 𝑥2, 𝑥4)
(1,2,1)

(2,3,3)

↦

(𝑥1, 𝑥3, 𝑥4)
(1,1,1)

(3,3,2)

↦

(𝑥2, 𝑥3, 𝑥4)
(1,3,1)

(2,1,1)

↦

(𝑥1, 𝑥2, 𝑥3)

(𝑥1, 𝑥2, 𝑥4)

(𝑥1, 𝑥3, 𝑥4)

(𝑥2, 𝑥3, 𝑥4)

(1,2,1)

(2,3,2)
↦

(1,2,1)

(2,3,3)
↦

(2,1,3)

(1,1,1)
↦

(2,1,1)

(2,3,2)
↦

for each 𝑆, inherit
from such a 𝑇 that

3 ∉ 𝜎 𝑇 |𝑥1

for each 𝑆, inherit
from such a 𝑇 that

3 ∈ 𝜎 𝑇 |𝑥1

by discarding this
assignment, list size

is decreased by 1

Proof Overview

▪ Bipartite (𝑟, 1)-case

▪ Bipartite (𝑟, 𝑞)-case

▪ Non-bipartite 𝑟-case

Proof Overview

▪ Bipartite (𝑟, 1)-case

▪ Bipartite (𝑟, 𝑞)-case

▪ Non-bipartite 𝑟-case

Takeaway

▪ Parameterized Inapproximability Hypothesis – parameterized analog of PCP

▪ Baby PIH – inapproximability of the list-satisfiability of (parameterized) 2CSP

▪ W[1]-hard to distinguish between [1-list satisfiable] and [not even 𝑟-list satisfiable]

▪ Proof Idea: induction on the list size

Takeaway

▪ Parameterized Inapproximability Hypothesis – parameterized analog of PCP

▪ Baby PIH – inapproximability of the list-satisfiability of (parameterized) 2CSP

▪ W[1]-hard to distinguish between [1-list satisfiable] and [not even 𝑟-list satisfiable]

▪ Proof Idea: induction on the list size

▪ Average Baby PIH?
▪ ⇒ constant inapproximability of 𝑘-ExactCover

Takeaway

▪ Parameterized Inapproximability Hypothesis – parameterized analog of PCP

▪ Baby PIH – inapproximability of the list-satisfiability of (parameterized) 2CSP

▪ W[1]-hard to distinguish between [1-list satisfiable] and [not even 𝑟-list satisfiable]

▪ Proof Idea: induction on the list size

▪ Average Baby PIH?
▪ ⇒ constant inapproximability of 𝑘-ExactCover

▪ Thanks!

	Slide 1: Baby PIH: Parameterized Inapproximability of Min CSP
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Parameterized Complexity
	Slide 5: Parameterized Complexity
	Slide 6: Parameterized Approximation
	Slide 7
	Slide 8: Parameterized Hardness of Approximation
	Slide 9
	Slide 10: Recall: PCP Theorem
	Slide 11: Parameterized Inapproximability Hypothesis
	Slide 12: Parameterized Inapproximability Hypothesis
	Slide 13: Outline
	Slide 14: List Satisfiability of CSP
	Slide 15: List Satisfiability of CSP
	Slide 16: List Satisfiability of CSP
	Slide 17: List Satisfiability of CSP
	Slide 18: List Satisfiability of CSP
	Slide 19: List Satisfiability of CSP
	Slide 20: List Satisfiability of CSP
	Slide 21: List Satisfiability of CSP
	Slide 22: Baby PCP
	Slide 23: Baby PCP
	Slide 24: Baby PCP
	Slide 25: Baby PIH
	Slide 26: Baby PIH
	Slide 27: Outline
	Slide 28: Proof Overview
	Slide 29: Proof Overview
	Slide 30: Proof Overview
	Slide 31: Proof Overview
	Slide 32: Proof Overview
	Slide 33: Proof Overview
	Slide 34: Proof Overview
	Slide 35: Proof Overview
	Slide 36: Proof Overview
	Slide 37: Proof Overview
	Slide 38: Proof Overview
	Slide 39: Proof Overview
	Slide 40: Proof Overview
	Slide 41: Proof Overview
	Slide 42: Proof Overview
	Slide 43: Proof Overview
	Slide 44: Proof Overview
	Slide 45: Proof Overview
	Slide 46: Proof Overview
	Slide 47: Proof Overview
	Slide 48: Proof Overview
	Slide 49: Proof Overview
	Slide 50: Proof Overview
	Slide 51: Proof Overview
	Slide 52: Takeaway
	Slide 53: Takeaway
	Slide 54: Takeaway

