Baby PIH:
Parameterized
Inapproximability of Min CSP

Venkatesan Guruswami = Xuandi Ren Sai Sandeep

UC Berkeley UC Berkeley UC Berkeley

Outline

= Background
= Parameterized Complexity
= Constraint Satisfaction Problem (CSP)
= Parameterized Inapproximability Hypothesis (PIH)

= OQur Result
- Baby PIH

= Proof Overview

Outline

= Background
= Parameterized Complexity
= Constraint Satisfaction Problem (CSP)
= Parameterized Inapproximability Hypothesis (PIH)

= OQur Result
- Baby PIH

= Proof Overview

Parameterized Complexity

How to cope with an NP-hard problem?

= Associate each instance x with a parameter k € N
= k<L |x|

= Measure complexity over n = |x| and k

= FPT (Fixed-Parameter Tractable, Analogue of P):
= Problems that admit n?M time algorithms for some computable function f

k-Vertex Cover

. Input: has an 0(2" - n°M) enumeration algorithm
* G = (V,E) and parameter k Efficient for small k!
* QOutput:
 Jvq, ..,V €V covering all =
the edges?

Parameterized Complexity

How to cope with an NP-hard problem?

= Associate each instance x with a parameter k € N
= k<L |x|

= Measure complexity over n = |x| and k

= W][1] (Analogue of NP): widely believed W[1] # FPT

k-Clique Unlikely to have an
* Input:

G = (V,E) and parameter k
e OQOutput:

* 3vy,.., v, €V forming a

clique?

No algorithm known with runtime n

n%M time algorithm
o(k)

-complete

Parameterized Approximation

Can we find a g(k)-approximation in f(k) - n%V time, for some
computable functions f, g?

E.g., Can we find a %-Clique in a graph with a k-clique?

Parameterized Approximation

Can we find a g(k)-approximation in f(k) - n%V time, for some
computable functions f, g?

Optimal ratio in FPT
Beat polytime algorithms: 2.611 + ¢ for k-Median, 9 + ¢ for k-Means

l Example [Cohen-Addad, Gupta, Kumar, Lee, Li’19]:

. (1 + §+ 8)-approximation algorithm for k-Median

. (1 + §+ e)-approximation algorithm for k-Means

k
klogk
g) .0

with runtime(.
&

Parameterized Hardness of Approximation

k-SetCover
= |[Chen-Lin’18, Lin'19, Lin-Ren-Sun-Wang’'23a] via threshold graph composition
= |Karthik-Laekhanukit-Manurangsi’19] via distributed PCP framework

k-Clique
= [Lin’21, Karthik-Khot'22, Lin-Ren-Sun-Wang’23b] via locally decodable codes
= [Chen-Feng-Laekhanukit-Liu’23] via Sidon sets

Max k-Coverage
= |[Manurangsi’20] via k-wise agreement testing

Ad-hoc reductions,
tailored to the specific problems!

Parameterized Hardness of Approximation

Unified and powerful machinery for
parameterized inapproximability?

Parameterized PCP-type theorem!

Recall: PCP Theorem

Constraint Satisfaction Problem
Input: I1=(X,X, ®)
e X: variables

« X: alphabet (1vs)gap CSP

 &: constraints Inbut: a CSP i IN=(X2o
output nput: a instance ——T(, 2, ®)

e Jo:X - X satisfying all constraints? “- -7 "o roeMeR S

val(Il) :=max. fraction of constraints
satisfied by some assignment

= PCP Theorem:

= For any constant £ and letn = |X|, there is no n°® time algorithm for (1 vs 0.9) gap CSP
assuming P#=NP.

€

Parameterized Inapproximability Hypothesis

Constraint Satisfaction Problem
Input: I1=(X,X, ®)

X: variables
YX: alphabet
®: constraints . . (1 VSH)—gipZ(c:DSP
Output: Input: a CSP instance ——T(, 2, D)

dg:X - ¥ satisfying all constraints? “- 77 Yo7 eRRR SESASL

val(Il):=max. fraction of constraints
satisfied by some assignment

= Parameterized CSP:
» k= |X|andn = |X|,is there an f (k) - n° time algorithm?
= Example: Multi-colored k-Clique

PIH (Parameterized Inapproximability Hypothesis) [[.okshtanov-Ramanujan-Saurabh-Zehavi’20]:
Let k = |X| and n = |2|, thereis no f (k) - n°") time algorithm for (1 vs 0.9) gap parameterized CSP.

€

Parameterized Inapproximability Hypothesis

= The analogue of PCP theorem here is W|1|#FPT = PIH

= It was known [Dinur-Manurangsi’18] that Gap-ETH = PIH
« Gap-ETH: “Constant approximating Max3SAT requires 2™ time”

= In arecent breakthrough [Guruswami-Lin-Ren-Sun-Wu’24], it was proven ETH = PIH
= ETH: “3SAT requires 2% time”

Outline

= Background
= Parameterized Complexity
= Constraint Satisfaction Problem (CSP)
= Parameterized Inapproximability Hypothesis (PIH)

= Qur Result
- Baby PIH

= Proof Overview

List Satisfiability of CSP

2-CSP
o Input:II = (X, X, ®) List Value
e Output: makx. list size of a list-satisfying
3 multi-assignment o: X — 2* multi-assignment g: X — 2%

list-satisfying all constraints?

* A constraint on (x, y) is list-satisfied iff 3u € o(x), v € o(y), s.t. (u, V) satisfies this constraint.

List Satisfiability of CSP

2-CSP
o Input:II = (X, X, ®) List Value
e Output: makx. list size of a list-satisfying
3 multi-assignment o: X — 2* multi-assignment ¢: X — 2%

list-satisfying all constraints?

* A constraint on (x, y) is list-satisfied iff 3u € o(x), v € o(y), s.t. (u, V) satisfies this constraint.

5 = {0,1,2,3) @

o(x1) = a(x3) /'/ Noo(xp) +o(xs) =2

4
4

List Satisfiability of CSP

2-CSP
o Input:II = (X, X, ®) List Value
e Output: makx. list size of a list-satisfying
3 multi-assignment o: X — 2* multi-assignment ¢: X — 2%

list-satisfying all constraints?

* A constraint on (x, y) is list-satisfied iff 3u € o(x), v € o(y), s.t. (u, V) satisfies this constraint.

X ={0,1,2,3} @ [1]

o(x1) = a(xy) ,// N o(xp) +o(x3) =2

4
4

\
\
\
\
\

1 @ ---------------- @ 1,2
[1] o(x;) +o(x3) =3 2]

List Satisfiability of CSP

2-CSP
o Input:II = (X, X, ®) List Value
e Output: makx. list size of a list-satisfying
3 multi-assignment o: X — 2* multi-assignment ¢: X — 2%

list-satisfying all constraints?

* A constraint on (x, y) is list-satisfied iff 3u € o(x), v € o(y), s.t. (u, V) satisfies this constraint.

5 = {0,1,2,3} @ 1]

/ \
o(x;) = o(xz) ,/ N o(xy) +o(x3) =2

/
/
/

1 Gy oy s @0

\
\
\
\
\

List Satisfiability of CSP

2-CSP
o Input:II = (X, X, ®) List Value
e Output: makx. list size of a list-satisfying
3 multi-assignment o: X — 2* multi-assignment ¢: X — 2%

list-satisfying all constraints?

* A constraint on (x, y) is list-satisfied iff 3u € o(x), v € o(y), s.t. (u, V) satisfies this constraint.

X ={0,1,2,3} @ [1]

// \
o(xy) = o(xz) N () +o(xg) =2
/// \
\
\

1 @ ---------------- @ 1,2
[1] o(x;) +o(x3) =3 2]

List Satisfiability of CSP

2-CSP
o Input:II = (X, X, ®) List Value
e Output: makx. list size of a list-satisfying
3 multi-assignment o: X — 2* multi-assignment ¢: X — 2%

list-satisfying all constraints?

* A constraint on (x, y) is list-satisfied iff 3u € o(x), v € o(y), s.t. (u, V) satisfies this constraint.

X ={0,1,2,3} @ [1]

o(x1) = a(xy) ,// N o(xp) +o(x3) =2

4
4

\
\
\
\
\

T S YT
[] o(xy) + o(x3) =3 [1,2]

List Satisfiability of CSP

2-CSP
o Input:II = (X, X, ®) List Value
e Output: makx. list size of a list-satisfying
3 multi-assignment o: X — 2* multi-assignment g: X — 2%

list-satisfying all constraints?

* We say a 2-CSP is r-list satisfiable iff 3o with meagla(x)l < r list-satisfying all constraints.
X

List Satisfiability of CSP

2-CSP
o Input:II = (X, X, ®) List Value
e Output: makx. list size of a list-satisfying
3 multi-assignment o: X — 2* multi-assignment g: X — 2%

list-satisfying all constraints?

* We say a 2-CSP is r-list satisfiable iff 3o with meagla(x)l < r list-satisfying all constraints.
X

e (CSP Value=1 < 1-list satisfiable = r-list satisfiable forr > 2
« r-list satisfiable = CSP Value > 1/r?

Baby PCP

2-CSP
o Input:II = (X, X, ®) List Value
e Output: makx. list size of a list-satisfying
3 multi-assignment o: X — 2* multi-assignment ¢: X — 2%

list-satisfying all constraints?

* We say a 2-CSP is r-list satisfiable iff 3o with meagla(x)l < r list-satisfying all constraints.
X

e (CSP Value=1 < 1-list satisfiable = r-list satisfiable forr > 2
« r-list satisfiable = CSP Value > 1/r?

* Baby PCP [Barto-Kozik'22]
 Foranyr > 1, It's NP-hard to distinguish between [1-list satisfiable] and [not even r-list satisfiable].

e

Baby PCP

2-CSP
o Input:II = (X, X, ®) List Value
e Output: makx. list size of a list-satisfying
3 multi-assignment o: X — 2* multi-assignment ¢: X — 2%

list-satisfying all constraints?

* We say a 2-CSP is r-list satisfiable iff 3o with meagla(x)l < r list-satisfying all constraints.
X

e (CSP Value=1 < 1-list satisfiable = r-list satisfiable forr > 2
« r-list satisfiable = CSP Value > 1/r?

* Baby PCP [Barto-Kozik'22]
 Foranyr > 1, It's NP-hard to distinguish between [1-list satisfiable] and [not even r-list satisfiable].
« < PCP) (whene < 1/r?)
 Foranye > 0, It's NP-hard to distinguish between [CSP Value =1] and [CSP Value <¢].

Baby PCP

* Baby PCP [Barto-Kozik'22]
* Assuming NP#P, for any r > 1, distinguishing between
[1-list satisfiable] and [not even r-list satisfiable] cannot be done in |I1|°™ time.

* (A combinatorial proof)
* (Enough to prove the NP-hardness of some PCSPs (e.g., (2 + £)-SAT))

Baby PIH

* Baby PCP [Barto-Kozik'22]
* Assuming NP#P, for any r > 1, distinguishing between
[1-list satisfiable] and [not even r-list satisfiable] cannot be done in |I1|°™ time.

* (A combinatorial proof)
* (Enough to prove the NP-hardness of some PCSPs (e.g., (2 + £)-SAT))

* Baby PIH |[This work]
« Assuming W[1]#FPT, ... cannot be done in £(|X]) - |2|°® time.
* (Anitself interesting inapproximability result for list-satisfiability of CSP)
* (A step towards PIH)
* (Enough to get some applications of PIH?)

Baby PIH

* Baby PCP [Barto-Kozik'22]
* Assuming NP#P, for any r > 1, distinguishing between
[1-list satisfiable] and [not even r-list satisfiable] cannot be done in |I1|°™ time.

* (A combinatorial proof)
* (Enough to prove the NP-hardness of some PCSPs (e.g., (2 + £)-SAT))

* Baby PIH |[This work]
« Assuming W[1]#FPT, ... cannot be done in £(|X]) - |2|°® time.
* (Anitself interesting inapproximability result for list-satisfiability of CSP)
* (A step towards PIH)
* (Enough to get some applications of PIH?)
* notsure.., but something stronger is enough!
* PIH = Average Baby PIH = Baby PIH

Outline

= Background
= Parameterized Complexity
= Constraint Satisfaction Problem (CSP)
= Parameterized Inapproximability Hypothesis (PIH)

= OQur Result
- Baby PIH

= Proof Overview

Proof Overview

* Follows from and extends [Barto-Kozik’22]’s proof of Baby PCP Theorem
* Direct Product Construction

2_CSP t-wise Direct)I;roduct 2-CSP
M= (X2 o) ot — ((t) 5t CD’)

partial satisfying assignments
for the set of variables

v

Proof Overview

* Follows from and extends [Barto-Kozik’22]’s proof of Baby PCP Theorem
* Direct Product Construction

2_CSP t-wise Direct Product 2-CSP

X
0= (X3 o) Mot — ((t) 3t o

v

[consistency checks

Proof Overview

Follows from and extends |Barto-Kozik'22]’s proof of Baby PCP Theorem
Direct Product Construction

2_CSP t-wise Direct Product 2-CSP

X
M= (X2 o) Mot = ((t) ANl

v

consistency checks]

partial satisfying assignments
for the set of variables

(Want to show):
For any r > 1, there exists t depending on 7, such that for every I,
 (Completeness) IfIlis satisfiable, then so is [1©¢.
* (Soundness) If ITis not satisfiable, then I1®¢ is not r-list satisfiable.

Proof Overview

Follows from and extends |Barto-Kozik'22]’s proof of Baby PCP Theorem
Direct Product Construction

t-wise Direct Product 2-CSP

2-CSP R %
M=% o)] not = ((t) 25,
partial satisfying assignments consistency checks]
for the set of variables
(Want to show):

For any r > 1, there exists t depending on 7, such that for every I,
 (Completeness) IfIlis satisfiable, then so is [1©¢.
* (Soundness) If ITis not satisfiable, then I1®¢ is not r-list satisfiable.

Reduction time: n%(Y) where n = |II|
 aunified proof for both Baby PCP and Baby PIH!

Proof Overview

(1,3,1,2) 7
(3,321) < [(x1, X3, X4, X10) }£ (x1, X2, X5, X7) J"’ =
(2,2,3,1) _ |

[and so on ... }[(X1, X2, X4, X9) J|—><

A 3-list satisfying assignment for [1©*

(1,1,1,2)
(2,1,2,3)
(3,1,2,2)
(1,1,3,2)
(2,2,3,3)
(1,1,3,1)

Proof Overview

(1,3,1,2) 7
(3,321) < [(X1, X3, X4, X10) }"£ (x1, X2, X5, X7) J"’ =
(2,2,3,1) _ |

[and so on ... }[(X1, X2, X4, X9) J|—><

A 3-list satisfying assignment for [1©*

(1,1,1,2)
(2,1,2,3)
(3,1,2,2)
(1,1,3,2)
(2,2,3,3)
(1,1,3,1)

Proof Overview

(1,3,1,2) 7 -
3321) -« [(X1, X3, X4, X10) }£ (X1, X2, X5, X7) J e
(2,23,1) _ | i

[and so on ... }[(X1, X2, X4, X9) J|—><

A 3-list satisfying assignment for [1©*

(1,1,1,2)
(2,1,2,3)
(3,1,2,2)
(1,1,3,2)
(2,2,3,3)
(1,1,3,1)

Proof Overview

(1,3,1,2) 7
3321) -« [(X1, X3, X4, X10) l£ (X1, X2, X5, X7) J"’ ~
(22,31) _ i N 5
1 //\ 1
: SN :
4 \

[and so on ... }[(x1, X2, X4, X9) J|—><

A 3-list satisfying assignment for [1©*

(1,1,1,2)
(2,1,2,3)
(3,1,2,2)
(1,1,3,2)
(2,2,3,3)
(1,1,3,1)

Proof Overview

2_CSP t-wise Direct)I(’roduct 2-CSP
SRS

v

* For some sufficiently large t = t(),
» given an r-list satisfying multi-assignment ¢ of [1®?,

« want to construct an (r — 1)-list satisfying multi-assignment ¢’ of [°t for some t’ < t.

Proof Overview

t-wise Direct Product 2-CSP
2-CSP ¥
M=(X2Z o) ot = ((t) , 2t CI)’)

v

* For some sufficiently large t = t(),
» given an r-list satisfying multi-assignment ¢ of [1®?,

« want to construct an (r — 1)-list satisfying multi-assignment ¢’ of [°t for some t’ < t.

» If we end up with the 1-list satisfiability of [1©*2), then we are done!

Proof Overview

t-wise Direct Product 2-CSP
2-CSP ¥
M=(X2Z o) ot = ((t) , 2t CI)’)

v

* For some sufficiently large t = t(),
» given an r-list satisfying multi-assignment ¢ of [19¢,

« want to construct an (r — 1)-list satisfying multi-assignment ¢’ of Mot for some t’ < t.
» foreachsetS e (), chooseasetT e ({) withscT
 thelist ¢'(S) is inherited from the list ¢(T) (at the hope of decreasing the list size by 1)

» If we end up with the 1-list satisfiability of [1©*2), then we are done!

€

Proof Overview

(1,3,1,2) 7
(3,321) < [(x1, X3, X4, X10) }£ (x1, X2, X5, X7) J"’ =
(2,2,3,1) _ |

[and so on ... }[(X1, X2, X4, X9) J|—><

A 3-list satisfying assignment for [1©*

(1,1,1,2)
(2,1,2,3)
(3,1,2,2)
(1,1,3,2)
(2,2,3,3)
(1,1,3,1)

Proof Overview

(1,3,1,2) 7
osx) [(X1, X3, X4, X10) }£ (%1, X2, X5, X7) J
(2231) i i
inherit { and so on ... }[(X1, X2, X4, X9g) J

A 3-list satisfying assignment for [1©*

(1,3,1)
(2,2,3) < [(xlrx3'x4) }’[(x1, X2, Xs5) J

Proof Overview

- (1,1,1,2)
[(X1, X3, X4, X10) }£ (X1, X2, X5, X7) J'—) - RSy
i i L (31,2.2)
{ and so on ... }[(X1, X2, X4, X9g) J nherit

A 3-list satisfying assignment for [1©*

(1,1,1)
[(x1,X3,X4) }’[(X1, X2, X5)] w (3,1,2)

{

Proof Overview

[(xl,xg,x4,x10) }£ (x1, X2, X5, X7) J

, - (1,1,3,2)
{ and so on ... }[(%1, X3, X4, Xg) JH- (2,2,3,3)

—)=

A 3-list satisfying assignment for [1©*

[(x1, X3, X4) }’[(%1, X2, Xs5) J inherit

Proof Overview

(1,3,1)
(2,2,3) ‘_' { (x1, X3, X4) }7[(%1, %2, Xs5) J -

[and so on ... }/- ---- { (x1, X2, X4)] =

A 2-list satisfying assignment for [1©3?

(1,1,1)
(3,1,2)

(1,1,3)
(2,2,3)

Proof Overview

= How can we discard one assignment safely?
= the one that is never used to meet any consistency constraints!

Proof Overview

= How can we discard one assignment safely?
= the one that is never used to meet any consistency constraints!

= Suppose we have the following bipartite direct product instance:

(1,2,1)

(3,3,2) |

(1,2,1)

(2,3,3)
(1,1,1)

(3,3,2) |

(1,3,1)
(2,1,1)

|

e N\ e N\
e - —mmmmm
(%1, X2,X3) P2 ~o (X1, X2, X3)
7,
. J \\\\‘\ -7 -/ \ J
AYIRN \"/ //,
\\)/ \\,/ I/
e N s Rerl e N
RGNS
(X1, X2, Xa) (277750227 (X1, X2, Xy)
AN
N - \\ "\l /,,’\(,' | J
/x\ /’/K\\ /)\
4 RSNV N)
/// Y U4 \\\\
7 I\ '\ ~
______ \ .4_‘___25 ()
(%1, X3, X4) SITTTOAIN DA (X, X3, Xy
A 7 \ ¥
\ \ Y,
// /7\\ /,\’\\\
/,, //<\\ \\\
4 /7, ,/ ~ \\ 4 N\
‘r - SN
0,’ \s‘
(x2'x3'x4) (XZ,X3,X4)
\ \ Y,

" (1,2,1)
| (2,3,2)
[(1,2,1)

| (2,3,3)
" (2,1,3)
L (1,1,1)
" (2,1,1)
| (2,3,2)

Proof Overview

= How can we discard one assignment safely?
= the one that is never used to meet any consistency constraints!

= Suppose we have the following bipartite direct product instance:

(1,21) 17 () . Y (L2,
- X1, X9,X3) [oo 4 (X1, X9, X =5
(332) . \(1, X2, X3) IR \(1, X2,X3) J | (232)
- . N . N _ X1 hever
(1,2,1) () 4 () | - (1,21 eqlllals to 3
- X1, X9, X g eI (X, X, X 7
(2,3,3) | e Y) 1 @233)
111 ((x) }_, _____ Ry)) [@y
1, A3 A4 ANPtd 1»A3) A4 7
332)] L \)LL)
(1,3,1) i £ T YT (211)
(x2'x3'x4) (XZ,X3,X4) = 7
(2,1,1) \ \) 1 (232)

Proof Overview

= How can we discard one assignment safely?
= the one that is never used to meet any consistency constraints!

= Suppose we have the following bipartite direct product instance:

can safely
remove the
assignment

%

(1,2,1)

G352
(1,2,1)

(2,3,3) |

(1,1,1)

323
(1,3,1)

(2,1,1)

|

e B e B
e e
(X1,X2,X3) Fs: so (X1, X2, X3)
\\ \\ //’/
\ 2R\ NN RN y,
AYIRN \"/ //,
AY P \\/ 4
'd N\ \Y)\ /’\I ()
e
RSN)
(X1, X2, Xa) (277750227 (X1, X2, Xa)
~ 0
N - \\ "\l /,,’\(,' | J
/x\ /’/K\\ /)\
4 RSNV N)
/// Y U4 \\\\
7 I\ '\ ~
______ \ .4_‘___25 ()
(%1, X3, X4) TR DA (X1, X3, Xy
A 7 \ ¥
|\ |\ J
// /7\\ /,\’\\\
/,, //<\\ \\\
4 /7, ,/ ~ \\ 4 N\
‘r - SN
0,’ \s‘
(x2'x3'x4) (XZ,X3,X4)
|\ |\ J

" (1,2,1)
| (2,3,2)
" (1,2,1)

| (2,3,3)
" (2,1,3)
L (1,1,1)
" (2,1,1)
| (2,3,2)

X1 never
equals to 3

Proof Overview

= How can we discard one assignment safely?
= the one that is never used to meet any consistency constraints!

= Suppose we have the following bipartite direct product instance:

for each S, inherit
from such a T that
3 E O'(T)|x1

(1,2,1) T
(3,3,2) |
(1,2,1) T

(2,3,3) |
(1,1,1) 7

(3,3,2) |

(1,3,1)
(2,1,1) } -

Ve

\\

) (

(X1, %2,%3) Feo7"

/,
J A ~ - 7 L
\ 0

(x1, X2, x3)

~

J

Vs

.

N
N L <7 e
7z

(X1, X2, X4) 5754007

’
RN
J \\]«(',\(7 _

(X1, X2, X4)

N

J

Vs

\\§

N 27NN 7 D Ve

/// P \\‘/\/\ \
_______ Sy
(xl, X3, x4) < 7N, ~C

\
N\ |

(x1,X3,X4)

~N

7
o, . SN

~

\\§

v, 7 <~

(x2’ x3) x4)]‘ ----------- S

\\§

(x2,x3,%4)

J

- (1,2,1)
1 232
- (1,2,1)
1 233)
F(2,1,3)
71 @)
- (2,1,1)
"1 @232

for each S, inherit
from such a T that

3 & U(T)|x1

Proof Overview

= How can we discard one assignment safely?
= the one that is never used to meet any consistency constraints!

= Suppose we have the following bipartite direct product instance:

for each S, inherit
from such a T that
3 E O'(T)|x1

by discarding this
assignment, list size
is decreased by 1

(1,2,1) -
(1,2,1) -
(2,33) |
(1,1,1) 7

(1,3,1)
(2,1,1) } -

Ve

\\

) (

(X1, %2,%3) Feo7"

/,
J A ~ - 7 L
\ 0

(x1, X2, x3)

~

J

Vs

.

N
N L <7 e
7z

(X1, X2, X4) 5754007

’
RN
J \\]«(',\(7 _

(X1, X2, X4)

N

J

Vs

\\§

N 27NN 7 D Ve

/// P \\‘/\/\ \
_______ Sy
(xl, X3, x4) < 7N, ~C

\
N\ |

(x1,X3,X4)

~N

7
o, . SN

~

\\§

v, 7 <~

(x2’ x3) x4)]‘ ----------- S

\\§

(x2,x3,%4)

J

- (1,2,1)
1 232
- (1,2,1)
1 233)
F(2,1,3)
71 @)
- (2,1,1)
"1 @232

for each S, inherit
from such a T that

3 & U(T)|x1

Proof Overview

= Bipartite (7, 1)-case

f

= Bipartite (1, q)-case

1

= Non-bipartite r-case

Proof Overview

= Bipartite (7, 1)-case

f

= Bipartite (1, q)-case

1

= Non-bipartite r-case @

Takeaway

= Parameterized Inapproximability Hypothesis - parameterized analog of PCP

= Baby PIH - inapproximability of the list-satisfiability of (parameterized) 2CSP
= WJ1]-hard to distinguish between [1-list satisfiable] and [not even r-list satisfiable]

= Proof Idea: induction on the list size

Takeaway

= Parameterized Inapproximability Hypothesis - parameterized analog of PCP

= Baby PIH - inapproximability of the list-satisfiability of (parameterized) 2CSP
= WJ1]-hard to distinguish between [1-list satisfiable] and [not even r-list satisfiable]
= Proof Idea: induction on the list size

= Average Baby PIH?
= = constant inapproximability of k-ExactCover

Takeaway

= Parameterized Inapproximability Hypothesis - parameterized analog of PCP

= Baby PIH - inapproximability of the list-satisfiability of (parameterized) 2CSP
= WJ1]-hard to distinguish between [1-list satisfiable] and [not even r-list satisfiable]
= Proof Idea: induction on the list size

= Average Baby PIH?
= = constant inapproximability of k-ExactCover

= Thanks!

	Slide 1: Baby PIH: Parameterized Inapproximability of Min CSP
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Parameterized Complexity
	Slide 5: Parameterized Complexity
	Slide 6: Parameterized Approximation
	Slide 7
	Slide 8: Parameterized Hardness of Approximation
	Slide 9
	Slide 10: Recall: PCP Theorem
	Slide 11: Parameterized Inapproximability Hypothesis
	Slide 12: Parameterized Inapproximability Hypothesis
	Slide 13: Outline
	Slide 14: List Satisfiability of CSP
	Slide 15: List Satisfiability of CSP
	Slide 16: List Satisfiability of CSP
	Slide 17: List Satisfiability of CSP
	Slide 18: List Satisfiability of CSP
	Slide 19: List Satisfiability of CSP
	Slide 20: List Satisfiability of CSP
	Slide 21: List Satisfiability of CSP
	Slide 22: Baby PCP
	Slide 23: Baby PCP
	Slide 24: Baby PCP
	Slide 25: Baby PIH
	Slide 26: Baby PIH
	Slide 27: Outline
	Slide 28: Proof Overview
	Slide 29: Proof Overview
	Slide 30: Proof Overview
	Slide 31: Proof Overview
	Slide 32: Proof Overview
	Slide 33: Proof Overview
	Slide 34: Proof Overview
	Slide 35: Proof Overview
	Slide 36: Proof Overview
	Slide 37: Proof Overview
	Slide 38: Proof Overview
	Slide 39: Proof Overview
	Slide 40: Proof Overview
	Slide 41: Proof Overview
	Slide 42: Proof Overview
	Slide 43: Proof Overview
	Slide 44: Proof Overview
	Slide 45: Proof Overview
	Slide 46: Proof Overview
	Slide 47: Proof Overview
	Slide 48: Proof Overview
	Slide 49: Proof Overview
	Slide 50: Proof Overview
	Slide 51: Proof Overview
	Slide 52: Takeaway
	Slide 53: Takeaway
	Slide 54: Takeaway

