# Baby PIH: Parameterized Inapproximability of Min CSP

Venkatesan Guruswami

UC Berkeley

Xuandi RenSai SandeepUC BerkeleyUC Berkeley



### Outline

#### Background

- Parameterized Complexity
- Constraint Satisfaction Problem (CSP)
- Parameterized Inapproximability Hypothesis (PIH)
- Our Result
  - Baby PIH
- Proof Overview



### Outline

#### Background

- Parameterized Complexity
- Constraint Satisfaction Problem (CSP)
- Parameterized Inapproximability Hypothesis (PIH)
- Our Result
  - Baby PIH
- Proof Overview



# Parameterized Complexity

How to cope with an NP-hard problem?

- Associate each instance x with a parameter  $k \in \mathbb{N}$ 
  - $k \ll |x|$
  - Measure complexity over n = |x| and k
- **FPT** (Fixed-Parameter Tractable, Analogue of P):
  - Problems that admit  $f(k) \cdot n^{O(1)}$  time algorithms for some computable function f

#### *k*-Vertex Cover

- Input:
  - G = (V, E) and parameter k
- Output:
  - $\exists v_1, \dots, v_k \in V$  covering all the edges?

has an  $O(2^k \cdot n^{O(1)})$  enumeration algorithm

Efficient for small k!





# Parameterized Complexity

How to cope with an NP-hard problem?

- Associate each instance x with a parameter  $k \in \mathbb{N}$ 
  - $k \ll |x|$
  - Measure complexity over n = |x| and k
- W[1] (Analogue of NP): widely believed W[1] ≠ FPT

#### *k*-Clique

- Input:
  - G = (V, E) and parameter k
- Output:
  - $\exists v_1, \dots, v_k \in V$  forming a clique?

Unlikely to have an  $f(k) \cdot n^{O(1)}$  time algorithm No algorithm known with runtime  $n^{O(k)}$ 

# W[1]

-complete



### Parameterized Approximation

Can we find a g(k)-approximation in  $f(k) \cdot n^{O(1)}$  time, for some computable functions f, g?

E.g., Can we find a  $\frac{k}{2}$ -clique in a graph with a *k*-clique?



### Parameterized Approximation

Can we find a g(k)-approximation in  $f(k) \cdot n^{O(1)}$  time, for some computable functions f, g?

• **Optimal** ratio in FPT

• Beat polytime algorithms:  $2.611 + \varepsilon$  for *k*-Median,  $9 + \varepsilon$  for *k*-Means

Example [Cohen-Addad, Gupta, Kumar, Lee, Li'19]:

- $\left(1 + \frac{2}{e} + \varepsilon\right)$ -approximation algorithm for **k**-Median
- $\left(1 + \frac{8}{e} + \varepsilon\right)$ -approximation algorithm for **k**-Means

with runtime 
$$\left(\frac{k \log k}{\varepsilon^2}\right)^k \cdot n^{O(1)}$$



# Parameterized Hardness of Approximation

#### k-SetCover

- [Chen-Lin'18, Lin'19, Lin-Ren-Sun-Wang'23a] via threshold graph composition
- [Karthik-Laekhanukit-Manurangsi'19] via distributed PCP framework
- *k*-Clique

...

- [Lin'21, Karthik-Khot'22, Lin-Ren-Sun-Wang'23b] via locally decodable codes
- [Chen-Feng-Laekhanukit-Liu'23] via Sidon sets
- Max k-Coverage
  - [Manurangsi'20] via *k*-wise agreement testing

Ad-hoc reductions, tailored to the specific problems!



### Parameterized Hardness of Approximation

Unified and powerful machinery for parameterized inapproximability?

Parameterized PCP-type theorem!



### Recall: PCP Theorem



- PCP Theorem:
  - For any constant  $\Sigma$  and let n = |X|, there is no  $n^{O(1)}$  time algorithm for (1 vs 0.9) gap CSP assuming P $\neq$ NP.



### Parameterized Inapproximability Hypothesis

#### **Constraint Satisfaction Problem**

**Input:**  $\Pi = (X, \Sigma, \Phi)$ 

- X: variables
- $\Sigma$ : alphabet
- Φ: constraints

Output:

- $\exists \sigma: X \to \Sigma$  satisfying all constraints?
- Parameterized CSP:
  - k = |X| and  $n = |\Sigma|$ , is there an  $f(k) \cdot n^{O(1)}$  time algorithm?
  - Example: Multi-colored k-Clique

<u>PIH (Parameterized Inapproximability Hypothesis)</u> [Lokshtanov-Ramanujan-Saurabh-Zehavi'20]: Let k = |X| and  $n = |\Sigma|$ , there is no  $f(k) \cdot n^{O(1)}$  time algorithm for (1 vs 0.9) gap parameterized CSP.



### Parameterized Inapproximability Hypothesis

- The analogue of PCP theorem here is  $W[1] \neq FPT \Rightarrow PIH$
- It was known [Dinur-Manurangsi'18] that  $Gap-ETH \Rightarrow PIH$ 
  - **Gap-ETH**: "Constant approximating Max3SAT requires  $2^{\Omega(n)}$  time"
- In a recent breakthrough [Guruswami-Lin-Ren-Sun-Wu'24], it was proven  $ETH \Rightarrow PIH$ 
  - **ETH**: "3SAT requires  $2^{\Omega(n)}$  time"



### Outline

#### Background

- Parameterized Complexity
- Constraint Satisfaction Problem (CSP)
- Parameterized Inapproximability Hypothesis (PIH)
- Our Result
  - Baby PIH
- Proof Overview



#### 2-CSP

- Input:  $\Pi = (X, \Sigma, \Phi)$
- Output:
  - $\exists$  multi-assignment  $\sigma: X \to 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment  $\sigma: X \to 2^{\Sigma}$ 



#### 2-CSP

- Input:  $\Pi = (X, \Sigma, \Phi)$
- Output:
  - $\exists$  multi-assignment  $\sigma: X \to 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment  $\sigma: X \to 2^{\Sigma}$ 





#### 2-CSP

- Input:  $\Pi = (X, \Sigma, \Phi)$
- Output:
  - $\exists$  multi-assignment  $\sigma: X \to 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment  $\sigma: X \to 2^{\Sigma}$ 





#### 2-CSP

- Input:  $\Pi = (X, \Sigma, \Phi)$
- Output:
  - $\exists$  multi-assignment  $\sigma: X \to 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment  $\sigma: X \to 2^{\Sigma}$ 





#### 2-CSP

- Input:  $\Pi = (X, \Sigma, \Phi)$
- Output:
  - $\exists$  multi-assignment  $\sigma: X \to 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment  $\sigma: X \to 2^{\Sigma}$ 





#### 2-CSP

- Input:  $\Pi = (X, \Sigma, \Phi)$
- Output:
  - $\exists$  multi-assignment  $\sigma: X \to 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment  $\sigma: X \to 2^{\Sigma}$ 





#### 2-CSP

- Input:  $\Pi = (X, \Sigma, \Phi)$
- Output:
  - $\exists$  multi-assignment  $\sigma: X \rightarrow 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment  $\sigma: X \to 2^{\Sigma}$ 

• We say a 2-CSP is *r*-list satisfiable iff  $\exists \sigma$  with  $\max_{x \in X} |\sigma(x)| \le r$  list-satisfying all constraints.



#### 2-CSP

- Input:  $\Pi = (X, \Sigma, \Phi)$
- Output:
  - $\exists$  multi-assignment  $\sigma: X \rightarrow 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment  $\sigma: X \to 2^{\Sigma}$ 

- We say a 2-CSP is *r*-list satisfiable iff  $\exists \sigma$  with  $\max_{x \in X} |\sigma(x)| \le r$  list-satisfying all constraints.
  - CSP Value=1  $\Leftrightarrow$  1-list satisfiable  $\Rightarrow$  *r*-list satisfiable for  $r \ge 2$
  - *r*-list satisfiable  $\Rightarrow$  CSP Value  $\ge 1/r^2$



# Baby PCP

#### 2-CSP

- Input:  $\Pi = (X, \Sigma, \Phi)$
- Output:
  - $\exists$  multi-assignment  $\sigma: X \rightarrow 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment  $\sigma: X \to 2^{\Sigma}$ 

- We say a 2-CSP is *r*-list satisfiable iff  $\exists \sigma$  with  $\max_{x \in X} |\sigma(x)| \le r$  list-satisfying all constraints.
  - CSP Value=1  $\Leftrightarrow$  1-list satisfiable  $\Rightarrow$  *r*-list satisfiable for  $r \ge 2$
  - *r*-list satisfiable  $\Rightarrow$  CSP Value  $\ge 1/r^2$
- Baby PCP [Barto-Kozik'22]
  - For any r > 1, It's NP-hard to distinguish between [1-list satisfiable] and [not even r-list satisfiable].



# Baby PCP

#### 2-CSP

- Input:  $\Pi = (X, \Sigma, \Phi)$
- Output:
  - $\exists$  multi-assignment  $\sigma: X \rightarrow 2^{\Sigma}$ list-satisfying all constraints?

List Value max. list size of a list-satisfying multi-assignment  $\sigma: X \to 2^{\Sigma}$ 

€

- We say a 2-CSP is *r*-list satisfiable iff  $\exists \sigma$  with  $\max_{x \in X} |\sigma(x)| \le r$  list-satisfying all constraints.
  - CSP Value=1  $\Leftrightarrow$  1-list satisfiable  $\Rightarrow$  *r*-list satisfiable for  $r \ge 2$
  - *r*-list satisfiable  $\Rightarrow$  CSP Value  $\ge 1/r^2$
- Baby PCP [Barto-Kozik'22]
  - For any r > 1, It's NP-hard to distinguish between [1-list satisfiable] and [not even r-list satisfiable].
- ⇐ PCP
  - For any  $\varepsilon > 0$ , It's NP-hard to distinguish between [CSP Value =1] and [CSP Value  $< \varepsilon$ ].



 $(\text{when } \varepsilon < 1/r^2)$ 

# Baby PCP

- Baby PCP [Barto-Kozik'22]
  - Assuming NP≠P, for any r > 1, distinguishing between
    [1-list satisfiable] and [not even r-list satisfiable] cannot be done in |Π|<sup>O(1)</sup> time.
  - (A combinatorial proof)
  - (Enough to prove the NP-hardness of some PCSPs (e.g.,  $(2 + \varepsilon)$ -SAT))



# Baby PIH

- Baby PCP [Barto-Kozik'22]
  - Assuming NP≠P, for any r > 1, distinguishing between
    [1-list satisfiable] and [not even r-list satisfiable] cannot be done in |Π|<sup>O(1)</sup> time.
  - (A combinatorial proof)
  - (Enough to prove the NP-hardness of some PCSPs (e.g.,  $(2 + \varepsilon)$ -SAT))
- Baby PIH [This work]
  - Assuming W[1] $\neq$ FPT, ... cannot be done in  $f(|X|) \cdot |\Sigma|^{O(1)}$  time.
  - (An itself interesting inapproximability result for list-satisfiability of CSP)
  - (A step towards PIH)
  - (Enough to get some applications of PIH?)



# Baby PIH

- Baby PCP [Barto-Kozik'22]
  - Assuming NP≠P, for any r > 1, distinguishing between
    [1-list satisfiable] and [not even r-list satisfiable] cannot be done in |Π|<sup>O(1)</sup> time.
  - (A combinatorial proof)
  - (Enough to prove the NP-hardness of some PCSPs (e.g.,  $(2 + \varepsilon)$ -SAT))
- Baby PIH [This work]
  - Assuming W[1] $\neq$ FPT, ... cannot be done in  $f(|X|) \cdot |\Sigma|^{O(1)}$  time.
  - (An itself interesting inapproximability result for list-satisfiability of CSP)
  - (A step towards PIH)
  - (Enough to get some applications of PIH?)
    - not sure..., but something stronger is enough!
    - $PIH \Rightarrow Average Baby PIH \Rightarrow Baby PIH$



### Outline

#### Background

- Parameterized Complexity
- Constraint Satisfaction Problem (CSP)
- Parameterized Inapproximability Hypothesis (PIH)
- Our Result
  - Baby PIH
- Proof Overview



- Follows from and extends [Barto-Kozik'22]'s proof of Baby PCP Theorem
- Direct Product Construction





- Follows from and extends [Barto-Kozik'22]'s proof of Baby PCP Theorem
- Direct Product Construction





- Follows from and extends [Barto-Kozik'22]'s proof of Baby PCP Theorem
- Direct Product Construction



- (Want to show):
- For any r > 1, there exists *t* depending on *r*, such that for every  $\Pi$ ,
  - (Completeness) If  $\Pi$  is satisfiable, then so is  $\Pi^{\odot t}$ .
  - (Soundness) If  $\Pi$  is not satisfiable, then  $\Pi^{\odot t}$  is not *r*-list satisfiable.



- Follows from and extends [Barto-Kozik'22]'s proof of Baby PCP Theorem
- Direct Product Construction



- (Want to show):
- For any r > 1, there exists t depending on r, such that for every  $\Pi$ ,
  - (Completeness) If  $\Pi$  is satisfiable, then so is  $\Pi^{\odot t}$ .
  - (Soundness) If  $\Pi$  is not satisfiable, then  $\Pi^{\odot t}$  is not *r*-list satisfiable.
- Reduction time:  $n^{O_r(1)}$  where  $n = |\Pi|$ 
  - a unified proof for both **Baby PCP** and **Baby PIH**!





























$$\frac{2\text{-CSP}}{\Pi = (X, \Sigma, \Phi)}$$

*t*-wise Direct Product 2-CSP  $\Pi^{\odot t} = \left( \begin{pmatrix} X \\ t \end{pmatrix}, \Sigma^{t}, \Phi' \right)$ 

- For some sufficiently large t = t(r),
  - given an *r*-list satisfying multi-assignment  $\sigma$  of  $\Pi^{\odot t}$ ,
  - want to construct an (r-1)-list satisfying multi-assignment  $\sigma'$  of  $\Pi^{\odot t'}$ , for some t' < t.





$$\frac{2\text{-CSP}}{\Pi = (X, \Sigma, \Phi)}$$

*t*-wise Direct Product 2-CSP  $\Pi^{\odot t} = \left( \begin{pmatrix} X \\ t \end{pmatrix}, \Sigma^{t}, \Phi' \right)$ 

- For some sufficiently large t = t(r),
  - given an *r*-list satisfying multi-assignment  $\sigma$  of  $\Pi^{\odot t}$ ,
  - want to construct an (r-1)-list satisfying multi-assignment  $\sigma'$  of  $\Pi^{\odot t'}$ , for some t' < t.

• If we end up with the 1-list satisfiability of  $\Pi^{\bigcirc(\geq 2)}$ , then we are done!



$$\frac{2\text{-}CSP}{\Pi = (X, \Sigma, \Phi)}$$

*t*-wise Direct Product 2-CSP  $\Pi^{\odot t} = \left( \begin{pmatrix} X \\ t \end{pmatrix}, \Sigma^{t}, \Phi' \right)$ 

- For some sufficiently large t = t(r),
  - given an *r*-list satisfying multi-assignment  $\sigma$  of  $\Pi^{\odot t}$ ,
  - want to construct an (r-1)-list satisfying multi-assignment  $\sigma'$  of  $\Pi^{\odot t'}$ , for some t' < t.
    - for each set  $S \in \binom{X}{t}$ , choose a set  $T \in \binom{X}{t}$  with  $S \subseteq T$
    - the list  $\sigma'(S)$  is inherited from the list  $\sigma(T)$  (at the hope of decreasing the list size by 1)
- If we end up with the 1-list satisfiability of  $\Pi^{\bigcirc(\geq 2)}$ , then we are done!































A 2-list satisfying assignment for  $\Pi^{\odot 3}$ ?



- How can we discard one assignment safely?
  - the one that is never used to meet any consistency constraints!



- How can we discard one assignment safely?
  - the one that is never used to meet any consistency constraints!
- Suppose we have the following *bipartite* direct product instance:





- How can we discard one assignment safely?
  - the one that is never used to meet any consistency constraints!
- Suppose we have the following *bipartite* direct product instance:





- How can we discard one assignment safely?
  - the one that is never used to meet any consistency constraints!
- Suppose we have the following *bipartite* direct product instance:



- How can we discard one assignment safely?
  - the one that is never used to meet any consistency constraints!
- Suppose we have the following *bipartite* direct product instance:



- How can we discard one assignment safely?
  - the one that is never used to meet any consistency constraints!
- Suppose we have the following *bipartite* direct product instance:



- Bipartite (*r*, 1)-case
- Bipartite (r, q)-case
- Non-bipartite *r*-case



- Bipartite (*r*, 1)-case
- Bipartite (r, q)-case
- Non-bipartite *r*-case





### Takeaway

- Parameterized Inapproximability Hypothesis parameterized analog of PCP
- Baby PIH inapproximability of the list-satisfiability of (parameterized) 2CSP
  - W[1]-hard to distinguish between [1-list satisfiable] and [not even *r*-list satisfiable]
  - Proof Idea: induction on the list size



### Takeaway

- Parameterized Inapproximability Hypothesis parameterized analog of PCP
- Baby PIH inapproximability of the list-satisfiability of (parameterized) 2CSP
  - W[1]-hard to distinguish between [1-list satisfiable] and [not even *r*-list satisfiable]
  - Proof Idea: induction on the list size
- Average Baby PIH?
  - $\Rightarrow$  constant inapproximability of *k*-ExactCover



### Takeaway

- Parameterized Inapproximability Hypothesis parameterized analog of PCP
- Baby PIH inapproximability of the list-satisfiability of (parameterized) 2CSP
  - W[1]-hard to distinguish between [1-list satisfiable] and [not even *r*-list satisfiable]
  - Proof Idea: induction on the list size
- Average Baby PIH?
  - $\Rightarrow$  constant inapproximability of *k*-ExactCover
- Thanks!

